Advertisement

Journal of Russian Laser Research

, Volume 37, Issue 3, pp 302–307 | Cite as

Spectrum Improvement of a High-Power Broad-Area Laser Diode Based on a Grating Semi-Feedback External Cavity Scheme

  • Yu-Lei Wang
  • Hong-Li Wang
  • Yi Chen
  • Wei-Ming He
  • Rui-Qing Fan
  • Zhi-Wei Lv
Article

Abstract

We propose a grating semi-feedback external cavity (GSFEC) scheme for high-power broad-area laser diodes for improving the spectrum characteristics of high-power semiconductor lasers. We design this scheme as two crossed cylindrical resonators employing a holographic diffraction grating and a rectangular highly reflecting mirror. In our experiments, we obtain stable spectrum characteristics over a tuning range of 5 nm, with maximum output power up to 764 mW at an operating current of 3.5 A. The wavelength drift rate with injection current decreases from 0.59 nm/A of free-running condition to 0.2 nm/A, and the laser bandwidth is compressed to 21.5% at 2 A.

Keywords

grating semi-feedback external cavity spectrum characteristics broad-area laser diodes 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    E. Samsøe, P. Andersen, S. Andersson-Engels, and P. Petersen, Opt. Express, 12, 609 (2004).ADSCrossRefGoogle Scholar
  2. 2.
    S. K. Mandre, I. Fischer, and W. Elsäßer, Opt. Commun., 224, 355 (2005).Google Scholar
  3. 3.
    D. Vijayakumar, O. B. Jensen, and B. Thestrup, Opt. Express, 17, 5684 (2009).ADSCrossRefGoogle Scholar
  4. 4.
    D. Hoffmann, K. Huthmacher, C. D¨oring, and H. Fouckhardt, Appl. Phys. Lett., 96, 1104 (2010).Google Scholar
  5. 5.
    J.-M. Verdiell and R. Frey, IEEE J. Quantum Electron., QE-26, 270 (1990).ADSCrossRefGoogle Scholar
  6. 6.
    M. Chi, N.-S. Bøgh, B. Thestrup, and P.M. Petersen, Appl. Phys. Lett., 85, 1107 (2004).ADSCrossRefGoogle Scholar
  7. 7.
    B. Liu, Y. Liu, and Y. Braiman, Opt. Express, 18, 7361 (2010).ADSCrossRefGoogle Scholar
  8. 8.
    O. B. Jensen and P. M. Petersen, Opt. Express, 21, 6076 (2013).ADSCrossRefGoogle Scholar
  9. 9.
    R. Lang, IEEE J. Quantum Electron., QE-18, 976 (1982).ADSCrossRefGoogle Scholar
  10. 10.
    P. Phua, Opt. Express, 19, 5364 (2011).ADSCrossRefGoogle Scholar
  11. 11.
    T. Tachikawa, R. Shogenji, and J. Ohtsubo, Opt. Rev., 16, 533 (2009).CrossRefGoogle Scholar
  12. 12.
    G. van Tartwijk and D. Lenstra, J. Opt. B: Quantum Semiclass. Opt., 7, 87 (1995).ADSGoogle Scholar
  13. 13.
    B. Liu and Y. Braiman, Opt. Express, 21, 31218 (2013).ADSCrossRefGoogle Scholar
  14. 14.
    K. Petermann, External Optical Feedback Phenomena in Semiconductor Lasers. Advanced Networks Google Scholar
  15. 15.
    and Services, International Society for Optics and Photonics (1995), p. 121.Google Scholar
  16. 16.
    S. Zhouping, L. Qihong, D. Jingxing, et al., Opt. Express, 15, 11776 (2007).ADSCrossRefGoogle Scholar
  17. 17.
    M. Chi and P.M. Petersen, Appl. Phys. Lett., 103, 171112 (2013).ADSCrossRefGoogle Scholar
  18. 18.
    B. Liu, Y. Liu, and Y. Braiman, Appl. Opt., 48, 365 (2009).ADSCrossRefGoogle Scholar
  19. 19.
    M. Britzger, A. Khalaidovski, B. Hemb, et al., Opt. Lett., 37, 3117 (2012).ADSCrossRefGoogle Scholar
  20. 20.
    V. Raab and R. Menzel, Opt. Lett., 27, 167 (2002).ADSCrossRefGoogle Scholar
  21. 21.
    N. Schunk and K. Petermann, IEEE Photonics Technol. Lett., 1, 49 (1989).ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Yu-Lei Wang
    • 1
  • Hong-Li Wang
    • 1
  • Yi Chen
    • 1
  • Wei-Ming He
    • 1
  • Rui-Qing Fan
    • 2
  • Zhi-Wei Lv
    • 1
  1. 1.National Key Laboratory of Science and Technology on Tunable Laser Harbin Institute of TechnologyHarbinP. R. China
  2. 2.Department of Chemistry, Harbin Institute of TechnologyHarbinP. R. China

Personalised recommendations