Journal of Russian Laser Research

, Volume 37, Issue 2, pp 197–206 | Cite as

Influence of Elemental Compositions in Laser Cleaning for Automotive Coating Systems

  • Mohammad Khairul Azhar Abdul Razab
  • Mohamad Suhaimi Jaafar
  • Nor Hakimin Abdullah
  • Mohamad Faiz Mohd Amin
  • Mazlan Mohamed


Laser coating removal is an approach that has the potential to replace conventional chemical-based stripping methods in industry. In addition to the laser parameters, the efficiency of this cleaning technique depends also on the coating system itself. For this reason, we study the influence of the elemental compositions of two Malaysian automotive coated substrates, referred to here as A and B, on laser coating removal mechanisms using the Cynosure Cynergy Nd:YAG laser. The optimum laser coating removal efficiencies for both samples A and B are determined based on the depths of 360 craters obtained using a given formula. Selected crater depths on both of the stipulated samples are then subjected to energy dispersive X-ray analysis to determine their elemental compositions. The results indicate that sample A, which has higher aluminum content, shows greater efficiency in coating system removal, with balanced carbon and oxygen compositions aiding coating reduction during the cleaning process.


laser cleaning Nd:YAG laser energy dispersive X-ray analysis coating systems 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    D. Bäuerle, Laser Processing and Chemistry, 4th ed., Springer, Berlin (2011).CrossRefGoogle Scholar
  2. 2.
    D. M. Kane, Laser Cleaning, World Scientific, Singapore (2006), Vol. II.Google Scholar
  3. 3.
    J. P. Nilaya and D. Biswas, Pramana J. Phys., 75, 1087 (2010).ADSCrossRefGoogle Scholar
  4. 4.
    W. M. Steen and J. Mazumder, Laser Material Processing, 4th ed., Springer, Berlin (2010).CrossRefGoogle Scholar
  5. 5.
    A. Kumar, R. Bhatt, P. Behere, et al., Pramana J. Phys., 82, 237 (2014).ADSCrossRefGoogle Scholar
  6. 6.
    M. K. A. A. Razab, M. S. Jaafar, A. A. Rahman, and S. A. Saidi, Appl. Mech. Mater., 554, 439 (2014).CrossRefGoogle Scholar
  7. 7.
    V. Veiko, T. J. Mutin, V. Smirnov, et al., “Fundamentals of laser assisted micro- and nanotechnologies,” Proc. SPIE, 6985, 69850D (2008).CrossRefGoogle Scholar
  8. 8.
    J. Lee and K. Watkins, Opt. Lasers Eng., 34, 429 (2000).CrossRefGoogle Scholar
  9. 9.
    Y. K. Madhukar, S. Mullick, S. S. Chakraborty, and A. K. Nath, Procedia Eng., 64, 467 (2013).CrossRefGoogle Scholar
  10. 10.
    Y. S. Koh, “Laser cleaning as a conservation technique for corroded metal artifacts,” Ph.D. Thesis, Lule°a University of Technology, Sweden (2006).Google Scholar
  11. 11.
    G. Chen, T. Kwee, K. Tan, et al., Appl. Phys. A, 101, 249 (2010).ADSCrossRefGoogle Scholar
  12. 12.
    Y. K. Madhukar, S. Mullick, and A. K. Nath, Appl. Surf. Sci., 286, 192 (2013).ADSCrossRefGoogle Scholar
  13. 13.
    T. Naguy and R. Straw, Report “Laser technology for aerospace maintenance and sustainment applications,” Air Force Research Laboratory, Wright-Patterson Air Force Base, Ohio, USA (2010).Google Scholar
  14. 14.
    M. K. A. A. Razab, M. S. Jaafar, A. A. Rahman, et al., “Influence of threshold fluence, absorption coefficient and thermal loading in laser paint removal mechanisms,” in: Environment, Energy, and Applied Technology, CRC Press (2015), p. 885.Google Scholar
  15. 15.
    M. K. A. A. Razab, M. S. Jaafar, A. A. Rahman, and S. Affandi Saidi, Adv. Environ. Biol., 8, 227 (2014).Google Scholar
  16. 16.
    D. Roberts, Appl. Phys. A, 79, 1067 (2004).ADSCrossRefGoogle Scholar
  17. 17.
    X. Zhou, K. Imasaki, H. Furukawa, et al., Surf. Coatings Technol., 137, 170 (2001).CrossRefGoogle Scholar
  18. 18.
    C. Cottam, D. Emmony, A. Cuesta, and R. Bradley, J. Mater. Sci., 33, 3245 (1998).ADSCrossRefGoogle Scholar
  19. 19.
    E. B. Siggs, “Laser and electron beam treatments for corrosion protection of friction stir welds in aerospace alloys,” Ph.D. Thesis, University of Birmingham, UK (2010).Google Scholar
  20. 20.
    M. K. A. A. Razab, M. S. Jaafar, and A. A. Rahman, Int. J. Eng. Technol., 14, 39 (2014).Google Scholar
  21. 21.
    J. Arthur, R. Bowman, and R. Straw, Final Technical Report “Robotic laser coating removal system,” in Environmental Security Technology Certification Program, Arlington, Virginia, USA (2008).Google Scholar
  22. 22.
    S. Georgiou, “Laser cleaning methodologies of polymer substrates,” in: K. L. Thomas (Ed.), Polymers and Light, Springer, Berlin (2004), p. 1.CrossRefGoogle Scholar
  23. 23.
    L. Li, W. M. Steen, P. J. Modern, and J. T. Spencer, Proc. SPIE, 2246, 84 (1994).ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Mohammad Khairul Azhar Abdul Razab
    • 1
  • Mohamad Suhaimi Jaafar
    • 2
  • Nor Hakimin Abdullah
    • 1
  • Mohamad Faiz Mohd Amin
    • 1
  • Mazlan Mohamed
    • 1
  1. 1.Advanced Material Research Cluster, Faculty of Earth ScienceUniversiti Malaysia Kelantan Jeli CampusJeliMalaysia
  2. 2.School of PhysicsUniversiti Sains Malaysia Main CampusMindenMalaysia

Personalised recommendations