Advertisement

Journal of Russian Laser Research

, Volume 37, Issue 2, pp 107–122 | Cite as

Excitation of the Classical Electromagnetic Field in a Cavity Containing a Thin Slab with a Time-Dependent Conductivity

  • Viktor V. Dodonov
  • Alexandre V. Dodonov
Article

Abstract

We derive an exact infinite set of coupled ordinary differential equations describing the evolution of the modes of the classical electromagnetic field inside an ideal cavity containing a thin slab with the time-dependent conductivity σ(t) and dielectric permittivity ε(t) for the dispersion-less media. We analyze this problem in connection with the attempts to simulate the so-called dynamical Casimir effect in three-dimensional electromagnetic cavities containing a thin semiconductor slab periodically illuminated by strong laser pulses. Therefore, we assume that functions σ(t) and δε(t) = ε(t) − ε(0) are different from zero during short time intervals (pulses) only. Our main goal here is to find the conditions under which the initial nonzero classical field could be amplified after a single pulse (or a series of pulses). We obtain approximate solutions to the dynamical equations in the cases of “small” and “big” maximal values of the functions σ(t) and δε(t). We show that the single-mode approximation used in the previous studies can be justified in the case of “small” perturbations, but the initially excited field mode cannot be amplified in this case if the laser pulses generate free carriers inside the slab. The amplification could be possible, in principle, for extremely high maximum values of conductivity and the concentration of free carries (the model of an “almost ideal conductor”) created inside the slab under the crucial condition providing the negativity of the function δε(t). This result follows from a simple approximate analytical solution confirmed by exact numerical calculations. However, the evaluation shows that the necessary energy of laser pulses must be, probably, unrealistically high.

Keywords

Classical electrodynamics Maxwell equations dynamical Casimir effect time-dependent conductivity Drude model discrete modes electromagnetic cylindrical and rectangular cavities semiconductors laser pulses 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    V. V. Dodonov, “Nonstationary Casimir effect and analytical solutions for quantum fields in cavities with moving boundaries,” in: M. W. Evans (Ed.), Modern Nonlinear Optics, Advances in Chemical Physics Series, Wiley, New York (2001), Vol. 119, Pt. 1, p. 309 [quant-ph/0106081].Google Scholar
  2. 2.
    V. V. Dodonov and A. V. Dodonov, J. Russ. Laser Res., 26, 445 (2005).CrossRefGoogle Scholar
  3. 3.
    V. V. Dodonov, Phys. Scr., 82, 038105 (2010).ADSCrossRefGoogle Scholar
  4. 4.
    D. A. R. Dalvit, P. A. Maia Neto, and F. D. Mazzitelli, “Fluctuations, dissipation and the dynamical Casimir effect,” in: D. Dalvit, P. Milonni, D. Roberts, and F. da Rosa (Eds.), Casimir Physics, Lecture Notes in Physics, Springer, Berlin (2011), Vol. 834, p. 419 [arXiv: 1006.4790].Google Scholar
  5. 5.
    P. D. Nation, J. R. Johansson, M. P. Blencowe, and F. Nori, Rev. Mod. Phys., 84, 1 (2012).ADSCrossRefGoogle Scholar
  6. 6.
    G. T. Moore, J. Math. Phys., 11, 2679 (1970).ADSCrossRefGoogle Scholar
  7. 7.
    E. Yablonovitch, Phys. Rev. Lett., 62, 1742 (1989).ADSCrossRefGoogle Scholar
  8. 8.
    E. Sassaroli, Y. N. Srivastava, and A. Widom, Phys. Rev. A, 50, 1027 (1994).ADSCrossRefGoogle Scholar
  9. 9.
    V. V. Dodonov and A. B. Klimov, Phys. Lett. A, 167, 309 (1992).ADSCrossRefGoogle Scholar
  10. 10.
    V. V. Dodonov and A. B. Klimov, Phys. Rev. A, 53, 2664 (1996).ADSCrossRefGoogle Scholar
  11. 11.
    A. Lambrecht, M.-T. Jaekel, and S. Reynaud, Phys. Rev. Lett., 77, 615 (1996).ADSCrossRefGoogle Scholar
  12. 12.
    D. A. R. Dalvit and F. D. Mazzitelli, Phys. Rev. A, 59, 3049 (1999).ADSMathSciNetCrossRefGoogle Scholar
  13. 13.
    G. Plunien, R. Schützhold, and G. Soff, Phys. Rev. Lett., 84, 1882 (2000).ADSCrossRefGoogle Scholar
  14. 14.
    V. I. Man’ko, J. Sov. Laser Res., 12, 383 (1991).CrossRefGoogle Scholar
  15. 15.
    Y. E. Lozovik, V. G. Tsvetus, and E. A. Vinogradov, Phys. Scr., 52, 184 (1995).ADSCrossRefGoogle Scholar
  16. 16.
    C. M. Wilson, G. Johansson, A. Pourkabirian, et al., Nature, 479, 376–379 (2011).ADSCrossRefGoogle Scholar
  17. 17.
    P. L¨ahteenm¨aki, G. S. Paraoanu, J. Hassel, and P. J. Hakonen, Proc. Natl. Acad. Sci. USA, 110, 4234 (2013).Google Scholar
  18. 18.
    C. Braggio, G. Bressi, G. Carugno, et al., Rev. Sci. Instrum., 75, 4967 (2004).ADSCrossRefGoogle Scholar
  19. 19.
    C. Braggio, G. Bressi, G. Carugno, et al., Europhys. Lett., 70, 754 (2005).ADSCrossRefGoogle Scholar
  20. 20.
    A. Agnesi, C. Braggio, G. Bressi, et al., J. Phys.: Conf. Ser., 161, 012028 (2009).ADSGoogle Scholar
  21. 21.
    C. Braggio, G. Bressi, G. Carugno, et al., Nucl. Instrum. Methods Phys. Res. A, 603, 451 (2009).ADSCrossRefGoogle Scholar
  22. 22.
    G. Giunchi, A. Figini Albisetti, C. Braggio, G. Carugno, et al., IEEE Trans. Appl. Supercond., 21, 745 (2011).ADSCrossRefGoogle Scholar
  23. 23.
    A. Agnesi, C. Braggio, G. Carugno, et al., Rev. Sci. Instrum., 82, 115107 (2011).ADSCrossRefGoogle Scholar
  24. 24.
    A. V. Dodonov and V. V. Dodonov, J. Opt. B: Quantum Semiclass. Opt., 7, S47 (2005).ADSCrossRefGoogle Scholar
  25. 25.
    V. V. Dodonov, J. Opt. B: Quantum Semiclass. Opt., 7, S445 (2005).ADSCrossRefGoogle Scholar
  26. 26.
    V. V. Dodonov and A. V. Dodonov, J. Phys. A: Math. Gen., 39, 6271 (2006).ADSMathSciNetCrossRefGoogle Scholar
  27. 27.
    V. V. Dodonov and A. V. Dodonov, J. Phys. B: At. Mol. Opt. Phys., 39, S749 (2006).ADSCrossRefGoogle Scholar
  28. 28.
    V. V. Dodonov and A. V. Dodonov, J. Russ. Laser Res., 27, 379 (2006).MathSciNetCrossRefGoogle Scholar
  29. 29.
    V. V. Dodonov, Phys. Rev. A, 80, 023814 (2009).ADSCrossRefGoogle Scholar
  30. 30.
    V. V. Dodonov, Rev. Mex. Fís., S57, 120 (2011).MathSciNetGoogle Scholar
  31. 31.
    M. Crocce, D. A. R. Dalvit, and F. D. Mazzitelli, Phys. Rev. A, 64, 013808 (2001).ADSCrossRefGoogle Scholar
  32. 32.
    A. V. Dodonov and V. V. Dodonov, Phys. Lett. A, 289, 291 (2001).ADSMathSciNetCrossRefGoogle Scholar
  33. 33.
    A. V. Dodonov and V. V. Dodonov, Phys. Lett. A, 376, 1903 (2012).ADSCrossRefGoogle Scholar
  34. 34.
    C. Braggio, G. Carugno, and G. Ruoso, MIR Report (unpublished) and private communications.Google Scholar
  35. 35.
    L. A. Vainshtein, Electromagnetic Waves, Radio i Svyaz, Moscow (1988), Sec. 88 [in Russian].Google Scholar
  36. 36.
    L. D. Landau and E. M. Lifshitz, Mechanics, Pergamon, Oxford (1969), Sec. 27.Google Scholar
  37. 37.
    D. A. Kirzhnits, Uspekhi Fiz. Nauk, 152, 399 (1987) [Sov. Phys. Uspekhi, 30, 575 (1987)].Google Scholar
  38. 38.
    S. A. Ramakrishna, Rep. Prog. Phys., 68, 449 (2005).ADSCrossRefGoogle Scholar
  39. 39.
    A. P. Prudnikov, Yu. A. Brychkov, and O. I. Marichev, Integrals and Series, Volume 1: Elementary Functions, Gordon and Breach, New York (1986).Google Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  1. 1.Instituto de Física, Universidade de BrasíliaBrasíliaBrazil

Personalised recommendations