Advertisement

Journal of Russian Laser Research

, Volume 36, Issue 6, pp 588–601 | Cite as

Dynamical Bragg Diffraction in the Laue Geometry in 1D Porous Silicon-Based Photonic Crystals

  • Sergey E. Svyakhovskiy
  • Anton I. Maydykovskiy
  • Vladimir B. Novikov
  • Viktor O. Kompanets
  • Aleksandr A. Skorynin
  • Vladimir A. Bushuev
  • Sergey V. Chekalin
  • Tatiana V. Murzina
  • Boris I. Mantsyzov
Article

Abstract

We consider optical effects accompanying the dynamical Bragg diffraction in the Laue geometry in one-dimensional photonic crystals (PhC). We predict theoretically, and observe in the experiment, the diffraction-induced pulse splitting of femtosecond light pulse, the optical switching due to the optical pendular effect, and the effects of selective compression and focusing. These effects originate from the interaction of two spatial eigenmodes of the photonic crystal: Borrmann and anti-Borrmann, which are spatially localized within a PhC in the layers with low and high dielectric constants, respectively.

Keywords

dynamical diffraction photonic crystals Laue geometry femtosecond phenomena pulse shaping optical switching porous silicon 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    K. Busch, G. von Freymann, S. Linden et al., Phys. Rep., 444, 101 (2007).CrossRefADSGoogle Scholar
  2. 2.
    E. M. Purcell, H. C. Torrey, and R. V. Pound, Phys. Rev., 69, 37 (1946).CrossRefADSGoogle Scholar
  3. 3.
    P. Lodahl, A. F. Van Driel, I. S. Nikolaev, et al. Nature, 430, 654 (2004).CrossRefADSGoogle Scholar
  4. 4.
    Hatice Altug and Jelena Vucković, Appl. Phys. Lett., 86, 111102 (2005).CrossRefGoogle Scholar
  5. 5.
    H. Gersen, T. J. Karle, R. J. P. Engelen, et al., Phys. Rev. Lett., 94, 073903 (2005).CrossRefADSGoogle Scholar
  6. 6.
    T. Dolgova, A. Maidykovski, M. Martemyanov, et al., Appl. Phys. Lett., 81, 2725 (2002).CrossRefADSGoogle Scholar
  7. 7.
    J. F. McMillan, X. Yang, N. C. Panoiu, et al., Opt. Lett., 31, 1235 (2006).CrossRefADSGoogle Scholar
  8. 8.
    M. Inoue, K. Arai, T. Fujii, and M. Abe, J. Appl. Phys., 83, 6768 (1998).CrossRefADSGoogle Scholar
  9. 9.
    K. Inoue and K. Ohtaka, Photonic Crystals: Physics, Fabrication and Applications, Springer (2013).Google Scholar
  10. 10.
    V. A. Bushuev, B. I. Mantsyzov, and A. A. Skorynin, Phys. Rev. A, 79, 053811 (2009).CrossRefADSGoogle Scholar
  11. 11.
    M. L. Calvo, P. Cheben, O. Mart´ınez-Matos, et al., Phys. Rev. Lett., 97, 084801 (2006).CrossRefADSGoogle Scholar
  12. 12.
    S. E. Svyakhovskiy, V. O. Kompanets, A.I. Maydykovskiy, et al., Phys. Rev. A, 86, 013843 (2012).CrossRefADSGoogle Scholar
  13. 13.
    I. Shutov, I. Ozheredov, A. Shumitski, and A. Chirkin, Opt. Spectrosc., 105, 79 (2008).CrossRefADSGoogle Scholar
  14. 14.
    A. A. Skorynin, V. A. Bushuev, and B. I. Mantsyzov, J. Exp. Theor. Phys., 115, 56 (2012).CrossRefADSGoogle Scholar
  15. 15.
    S. E. Svyakhovskiy, A. A. Skorynin, V. A. Bushuev, et al., J. Opt. Soc. Am. B, 30, 1261 (2013).CrossRefADSGoogle Scholar
  16. 16.
    F. Lederer, G. I. Stegeman, D. N. Christodoulides, et al., Phys. Rep., 463, 1 (2008).CrossRefADSGoogle Scholar
  17. 17.
    N. K. Efremidis, S. Sears, D. N. Christodoulides, et al., Phys. Rev. E, 66, 046602 (2002).CrossRefADSGoogle Scholar
  18. 18.
    F. Verluise, V. Laude, Z. Cheng, et al., Opt. Lett., 25, 575 (2000).CrossRefADSGoogle Scholar
  19. 19.
    G. D. Marshall, M. Ams, and M. J. Withford, Opt. Lett., 31, 2690 (2006).CrossRefADSGoogle Scholar
  20. 20.
    J. Scrimgeour, D. N. Sharp, C. F. Blanford, et al., Adv. Mater. 18, 1557 (2006).CrossRefGoogle Scholar
  21. 21.
    M. Miyake, Y. Chen, P. V. Braun, and P. Wiltzius, Adv. Mater. 21, 3012 (2009).CrossRefGoogle Scholar
  22. 22.
    P. Ni, P. Dong, B. Cheng, et al., Adv. Mater., 13, 437 (2001).CrossRefGoogle Scholar
  23. 23.
    D. Wang and H. M. Hwald, Adv. Mater., 16, 244 (2004).CrossRefGoogle Scholar
  24. 24.
    P. Jiang and M. J. McFarland, J. Am. Chem. Soc., 126, 13778 (2004).CrossRefGoogle Scholar
  25. 25.
    L. Pavesi, Nuovo Cim., 20, 1 (1997).Google Scholar
  26. 26.
    A. V. Tikhonravov, M. K. Trubetskov, and G. W. DeBell, Appl. Opt., 35, 5493 (1996).CrossRefADSGoogle Scholar
  27. 27.
    R. Geiss, S. Saravi, A. Sergeyev, et al., Laser Opt., 40, 3 (2015).Google Scholar
  28. 28.
    S. E. Svyakhovskiy, A. I. Maydykovsky, and T. V. Murzina, J. Appl. Phys., 112, 013106 (2012).CrossRefADSGoogle Scholar
  29. 29.
    A. Uhlir, Bell Syst. Tech. J., 35, 333 (1956).CrossRefGoogle Scholar
  30. 30.
    V. Lehmann and U. Gösele, Appl. Phys. Lett., 58, 8 (1991).CrossRefGoogle Scholar
  31. 31.
    R. L. Smith and S. D. Collins, J. Appl. Phys., 71, 8 (1992).CrossRefGoogle Scholar
  32. 32.
    E. Lorenzo, C. J. Oton, N. E. Capuj, et al., Physica Status Solidi (c), 2, 3227 (2005).CrossRefADSGoogle Scholar
  33. 33.
    B. E. Deal and A. Grove, J. Appl. Phys., 36, 3770 (1965).CrossRefADSGoogle Scholar
  34. 34.
    L. Golovan, D. Ivanov, V. Melnikov, et al., Appl. Phys. Lett., 88, 241113 (2006).CrossRefADSGoogle Scholar
  35. 35.
    S. E. Svyakhovskiy, A. A. Skorynin, V. A. Bushuev, et al., Opt. Exp., 22, 31002 (2014).CrossRefADSGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Sergey E. Svyakhovskiy
    • 1
  • Anton I. Maydykovskiy
    • 1
  • Vladimir B. Novikov
    • 1
  • Viktor O. Kompanets
    • 2
  • Aleksandr A. Skorynin
    • 1
  • Vladimir A. Bushuev
    • 1
  • Sergey V. Chekalin
    • 2
  • Tatiana V. Murzina
    • 1
  • Boris I. Mantsyzov
    • 1
  1. 1.Faculty of PhysicsLomonosov Moscow State UniversityMoscowRussia
  2. 2.Institute of SpectroscopyRussian Academy of SciencesTroitskRussia

Personalised recommendations