Journal of Russian Laser Research

, Volume 36, Issue 5, pp 430–439 | Cite as

Unitary Transform and Subadditivity Condition for Composite and Noncomposite Systems

  • Ashot S. Avanesov
  • Vladimir I. Man’ko


We study quantum correlations on the example of a bipartite system of two qubits. The system is described by the density matrix corresponding either to the Werner state or a generic X state. Also we study an analogous density matrix for the single-qudit state of a four-level atom. We perform the global unitary transform, calculate the quantum mutual information, and investigate its dependence on the parameters of the unitary matrix. Also we discuss the process of transforming a separable state into the entangled state for the composite system of two qubits and a single qudit.


quantum entanglement Werner state X state quantum information 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    E. H. Lieb and M. B. Ruskai, J. Math. Phys., 14, 1938 (1973).MathSciNetCrossRefADSGoogle Scholar
  2. 2.
    M. A. Nielsen and D. Petz, “A simple proof of the strong subadditivity inequality,” arXiv:0408130 [quant-ph] (2005).Google Scholar
  3. 3.
    M. B. Ruskai, “Liebs simple proof of concavity (A,B) > TrA p K B 1−p K and remarks on related inequalities,” arXiv:0404126v1 [quant-ph] (2004).Google Scholar
  4. 4.
    H. Araki and E. H. Lieb, Commun. Math. Phys., 18, 160 (1970).MathSciNetCrossRefADSGoogle Scholar
  5. 5.
    E. H. Lieb, Bull. Am. Math. Soc., 81, 1 (1975).MATHMathSciNetCrossRefGoogle Scholar
  6. 6.
    M. B. Ruskai, J. Math. Phys., 43, 4358 (2002); erratum 46, 019901 (2005).Google Scholar
  7. 7.
    J. von Neumann, Mathematical Foundations of Quantum Mechanics (1932), Translated by R. T. Beyer, Princeton University Press, Princeton (1955).Google Scholar
  8. 8.
    M. A. Man’ko and V. I. Man’ko, Phys. Scr., 2014, 014030 (2014).MathSciNetCrossRefGoogle Scholar
  9. 9.
    Todd Tilma, Mark S. Byrd, and E. C. G. Sudarshan, J. Phys. A: Math. Gen., 35, 10445 (2002).Google Scholar
  10. 10.
    E. Schr¨odinger, Naturwissenschaften, 23, 807; 823; 844 (1935).Google Scholar
  11. 11.
    A. Einstein, B. Podolsky, and N. Rosen, Phys. Rev., 44, 777 (1935).CrossRefADSGoogle Scholar
  12. 12.
    V. I. Man’ko and O. V. Man’ko, J. Exp. Theor. Phys., 85, 430 (1997).CrossRefADSGoogle Scholar
  13. 13.
    V. I. Man’ko and L. A. Markovich, J. Russ. Laser Res., 35, 200 (2014).CrossRefGoogle Scholar
  14. 14.
    M. A. Man’ko and V. I. Man’ko, Entropy, 17, 2876 (2015).MathSciNetCrossRefADSGoogle Scholar
  15. 15.
    V. N. Chernega and O. V. Man’ko, Phys. Scr., 90, 074052 (2015).CrossRefADSGoogle Scholar
  16. 16.
    J. F. Clauser, M. A. Horne, A. Shimony, and R. A. Holt, Phys. Rev. Lett. 24, 549 (1970).CrossRefADSGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  1. 1.Moscow Institute of Physics and Technology (State University)Moscow RegionRussia
  2. 2.Lebedev Physical InstituteRussian Academy of SciencesMoscowRussia
  3. 3.Physics DepartmentTomsk State UniversityTomskRussia

Personalised recommendations