Advertisement

Journal of Russian Laser Research

, Volume 36, Issue 4, pp 395–402 | Cite as

Calculation of Self-Generated Magnetic Fields in Laser-Produced Plasmas

  • Y. B. S. R. Prasad
  • S. Barnwal
  • P. A. Naik
  • P. D. Gupta
  • E. A. Bolkhovitinov
  • A. A. Rupasov
Article
  • 71 Downloads

Abstract

We develop an interactive procedure for estimating the self-generated magnetic fields in laser-produced plasmas using MATLAB software. We use this procedure for analyzing the digital images recorded employing a three-channel polarointerferometer to estimate the self-generated magnetic fields. The three regions of an image recorded using the three-channel polarointerferometer contain all the required information in the form of Faraday rotation (polarimetry), spatial profile of the incident probe beam (shadowgraphy), and electron-plasma density (interferometry). The computer program displays different portions of the image and allows the user to track the interference fringes interactively and displays the calculated spatial profiles of the electron density and the magnetic fields. Using this program, we estimate magnetic fields of the order of 2–4 MG at electron densities 1017 cm 3 in an aluminum plasma. The program replaces many calculations that have to be done manually.

Keywords

laser plasma self-generated magnetic fields Abel inversion Faraday effect 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    J. A. Stamper and B. H. Ripin, Phys. Rev. Lett., 34, 138 (1975).CrossRefADSGoogle Scholar
  2. 2.
    R. J. Mason, Phys. Rev. Lett., 42, 239 (1979).CrossRefADSGoogle Scholar
  3. 3.
    H. Daido, F. Miki, K. Mima, et al., Phys. Rev. Lett., 56, 846 (1986).CrossRefADSGoogle Scholar
  4. 4.
    Z. Najmudin, M. Tatarakis, A. Pukhov, et al., Phys. Rev. Lett., 87, 215004-1 (2001).CrossRefADSGoogle Scholar
  5. 5.
    Y. Sakagami, H. Kawakami, and C. Yamanaka, Phys. Rev. A, 21, 882 (1980).CrossRefADSGoogle Scholar
  6. 6.
    M. G. Drouet and H. Pepin, Appl. Phys. Lett., 28, 426 (1976).CrossRefADSGoogle Scholar
  7. 7.
    B. B. Pollock, D. H. Froula, P. F. Davis, et al., Rev. Sci. Instrum., 77, 114703 (2006).CrossRefADSGoogle Scholar
  8. 8.
    T. Pisarczyk, A. A. Rupasov, A. S. Sarkisov, and A. S. Shikanov, J. Sov. Laser Res., 11, 1 (1990).CrossRefGoogle Scholar
  9. 9.
    E. A. Bolkhovitinov, I. A. Krayushkin, A. A. Rupasov, et al., Instrum. Exp. Tech., 50, 379 (2007).CrossRefGoogle Scholar
  10. 10.
    Y. B. S. R. Prasad, S. Barnwal, E. A. Bolkhovitinov, et al., Rev. Sci. Instrum., 82, 123506 (2011).CrossRefADSGoogle Scholar
  11. 11.
  12. 12.
    W. Lochte-Holtgreven, “Evaluation of plasma parameters,” in: W. Lochte–Holtgreven (Ed.), Plasma Diagnostics, North Holland, Amsterdam (1968), p. 135.Google Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Y. B. S. R. Prasad
    • 1
  • S. Barnwal
    • 1
  • P. A. Naik
    • 1
  • P. D. Gupta
    • 1
  • E. A. Bolkhovitinov
    • 2
  • A. A. Rupasov
    • 2
  1. 1.Raja Ramanna Centre for Advanced TechnologyIndoreIndia
  2. 2.Lebedev Physical InstituteRussian Academy of SciencesMoscowRussia

Personalised recommendations