Journal of Russian Laser Research

, Volume 36, Issue 4, pp 350–355 | Cite as

Calculation of Thermal Lensing in End-Pumped YVO4/Nd:YVO4 Composite Crystals in View of the Temperature Distribution

  • Amir Hossein Farhadian
  • Hossein Saghafifar
  • Mahdy Dehghanbaghi


Composite crystals are very effective for controlling the thermal effect in end-pumped solid-state lasers. We calculate the temperature-field distribution and thermal focal length in both YVO4/Nd:YVO4 and Nd:YVO4 rectangular crystals with the end-pumped arrangement. Since it is impossible to calculate precisely the thermal focal length in composite crystals directly by the equations, this is usually done by analyzing additional optical path differences (OPD) caused by heat. For this, we use the temperature distributions in OPD calculations. The results show that, at a pump power of 25 W, the maximum temperature on the rear facet of an Nd:YVO4 original crystal is 560 K, while for the YVO4/Nd:YVO4 composite crystal it is 430 K, Also under the same conditions, the thermal focal length in the composite crystal is larger than in the original crystal, as expected.


thermal lensing composite crystal temperature distribution OPD 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Y. F. Chen, T. M. Huang, C. L. Wang, and L. J. Lee, Appl. Opt., 37, 5727 (1998).CrossRefADSGoogle Scholar
  2. 2.
    Y. F. Chen, Y. P. Lan, and S. C. Wang, Opt. Lett., 25, 1016 (2000).CrossRefADSGoogle Scholar
  3. 3.
    R. Fluck, G. Zhang, U. Keller, et al., Opt. Lett., 21, 1378 (1996).CrossRefADSGoogle Scholar
  4. 4.
    Z. Cai, W. Wen, J. Yao, et al., Chin. Opt. Lett., 3, 342 (2005).ADSGoogle Scholar
  5. 5.
    Y. F. Chen and S. W. Tsai, IEEE J. Quantum Electron., 37, 580 (2001).CrossRefADSGoogle Scholar
  6. 6.
    P. K. Mukhopadhyaya, M. B. Alsousb, K. Ranganathana, et al., Opt. Commun., 222, 399 (2003).CrossRefADSGoogle Scholar
  7. 7.
    F. Song, C. Zhang, X. Ding, et al., Appl. Phys. Lett., 81, 2145 (2002).CrossRefADSGoogle Scholar
  8. 8.
    A. Sugiyama and Y. Nara, Ceramics Int., 31, 1085 (2005).CrossRefGoogle Scholar
  9. 9.
    Z. Ma, D. Li, J. Gao, et al., Opt. Commun., 275, 179 (2007).CrossRefADSGoogle Scholar
  10. 10.
    M. P. MacDonald, Th. Graf, J. E. Balmer, and H. P. Weber, Opt. Commun., 78, 383 (2000).CrossRefADSGoogle Scholar
  11. 11.
    Th. Graf, E. Wyss, M. Roth, and H. P. Weber, Opt. Commun., 190, 327 (2001).CrossRefADSGoogle Scholar
  12. 12.
    A.-Y. Yao, W. Hou, H.-Q. Li, et al., Chin. Phys. Lett., 22, 607 (2005).CrossRefADSGoogle Scholar
  13. 13.
    H. Ogilvy, M. J. Withford, P. Dekker, and J. A. Piper, Opt. Express, 11, 2411 (2003).CrossRefADSGoogle Scholar
  14. 14.
    H. J. Moon, J. Yi, K. S. Kim, et al., J. Korean Phys. Soc., 33, 400 (1998).Google Scholar
  15. 15.
    A. Sugiyama and Y. Nara, Ceramics Int., 31, 1085 (2005).CrossRefGoogle Scholar
  16. 16.
    W. Koechner, Solid-State Lasers Engineering, William T. Rhodes (2006).Google Scholar
  17. 17.
    Z. G. Li, Z. J. Xiong, W. L. Huang, et al., Chin. J. Lasers, 32, 297 (2005).Google Scholar
  18. 18.
    P. Shi, W. Chen, L. Li, and A. S. Gan, Appl. Opt., 46, 6655 (2007).CrossRefADSGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Amir Hossein Farhadian
    • 1
  • Hossein Saghafifar
    • 1
  • Mahdy Dehghanbaghi
    • 1
  1. 1.Optics & Laser Science & Technology Research CenterMalek-Ashtar University of TechnologyShahinshahrIran

Personalised recommendations