Advertisement

Journal of Russian Laser Research

, Volume 36, Issue 4, pp 301–311 | Cite as

Hidden Quantum Correlations in Single Qudit Systems

  • Margarita A. Man’ko
  • Vladimir I. Man’ko
Article

Abstract

We introduce the notion of hidden quantum correlations. We present the mean values of observables depending on one classical random variable described by the probability distribution in the form of correlation functions of two (three, etc.) random variables described by the corresponding joint probability distributions. We develop analogous constructions for the density matrices of quantum states and quantum observables. We consider examples of four-dimensional Hilbert space corresponding to the “quantum roulette” and “quantum compass.”

Keywords

entanglement hidden quantum correlations information and entropic inequalities qudits noncomposite systems 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    E. Shrödinger, Naturwissenschaften, 23, 807 (1935).CrossRefADSGoogle Scholar
  2. 2.
    M. A. Nielsen and I. L. Chuang, Quantum Computation and Quantum Information, Cambridge University Press, Cambridge, UK (2000).MATHGoogle Scholar
  3. 3.
    J. S. Bell, Physics, 1, 19 (1964).Google Scholar
  4. 4.
    J. F. Clauser, M. A. Horne, A. Shimony and R. A. Holt, Phys. Rev. Lett., 23, 880 (1969).CrossRefADSGoogle Scholar
  5. 5.
    A. Aspect, P. Grangier, and G. Roger, Phys. Rev. Lett., 47, 460 (1981).CrossRefADSGoogle Scholar
  6. 6.
    A. Aspect, P. Grangier, and G. Roger, Phys. Rev. Lett., 49, 91 (1982).CrossRefADSGoogle Scholar
  7. 7.
    A. A. Klyachko, M. A. Can, S. Binicio\( \tilde{\mathrm{g}} \)lu, and A. S. Shumovsky, Phys. Rev. Lett., 101, 020403 (2008).Google Scholar
  8. 8.
    E. H. Lieb and M. B. Ruskai, J. Math. Phys., 14, 1938 (1973).MathSciNetCrossRefADSGoogle Scholar
  9. 9.
    M. B. Ruskai, J. Math. Phys., 43, 4358 (2002); Erratum, 46, 019901 (2005).Google Scholar
  10. 10.
    M. A. Nielsen and D. A. Petz, “A simple proof of the strong subadditivity inequality,” arXiv:quant-ph/ 0408130 (2004).Google Scholar
  11. 11.
    M. A. Man’ko and V. I. Man’ko, J. Russ. Laser Res., 34, 203 (2013).CrossRefGoogle Scholar
  12. 12.
    M. A. Man’ko and V. I. Man’ko, Phys. Scr., T160, 014030 (2014).CrossRefADSGoogle Scholar
  13. 13.
    M. A. Man’ko and V. I. Man’ko, J. Russ. Laser Res., 35, 298 (2014).CrossRefGoogle Scholar
  14. 14.
    M. A. Man’ko and V. I. Man’ko, J. Russ. Laser Res., 35, 509 (2014).CrossRefGoogle Scholar
  15. 15.
    M. A. Man’ko and V. I. Man’ko, Int. J. Quantum Inf., 12, 156006 (2014).Google Scholar
  16. 16.
    M. A. Man’ko and V. I. Man’ko, Entropy, 17, 2876 (2015).MathSciNetCrossRefADSGoogle Scholar
  17. 17.
    M. A. Man’ko and V. I. Man’ko, J. Phys.: Conf. Ser., 538, 012016 (2014).ADSGoogle Scholar
  18. 18.
    M. A. Man’ko, Phys. Scr., T153, 014045 (2013).CrossRefADSGoogle Scholar
  19. 19.
    M. A. Man’ko and V. I. Man’ko, J. Phys.: Conf. Ser., 442, 012008 (2013).ADSGoogle Scholar
  20. 20.
    M. A. Man’ko and V. I. Man’ko, J. Russ. Laser Res., 35, 582 (2014).CrossRefGoogle Scholar
  21. 21.
    V. N. Chernega and O. V. Man’ko, Phys. Scr., 90, 074052 (2015).CrossRefADSGoogle Scholar
  22. 22.
    V. I. Man’ko and L. A. Markovich, “Steering and correlations for the single qudit state on the example of j = 3/2,” arXiv:1503.02296 (2015); J. Russ. Laser Res., 36, 343 (2015).CrossRefGoogle Scholar
  23. 23.
    C. E. Shannon, Bell Syst. Tech. J., 27, 379 (1948).MATHMathSciNetCrossRefGoogle Scholar
  24. 24.
    A. S. Holevo, Probabilistic and Statistical Aspects of Quantum Theory, North Holland, Amsterdam (1982).MATHGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Margarita A. Man’ko
    • 1
  • Vladimir I. Man’ko
    • 1
    • 2
  1. 1.Lebedev Physical InstituteRussian Academy of SciencesMoscowRussia
  2. 2.Moscow Institute of Physics and Technology (State University)DolgoprudnyíRussia

Personalised recommendations