Journal of Russian Laser Research

, Volume 36, Issue 3, pp 228–236 | Cite as

Quantum Key Distribution with Several Cloning Attacks via a Depolarizing Channel

  • Mustapha Dehmani
  • Hamid Ez-Zahraouy
  • Abdelilah Benyoussef


We study the effect of many eavesdroppers cloning attacks via a depolarizing channel of the Bennett– Brassard cryptographic protocol on the quantum error and the mutual information between honest parties. We compute the quantum error and the mutual information for an arbitrary number of attacks. We prove that the quantum error, the secret information, and the secured/unsecured transition depend strongly on the eavesdroppers’ number, their angle of attack, and the depolarizing parameter. However, when all the eavesdroppers attack with an identical angle the quantum error increases with increase in the eavesdroppers’ number and/or decrease of the depolarizing parameter p for 0 ≤ p ≤ 0.165, while for p > 0.165, the lost information is greater than the mutual information exchanged between honest parties independently of the eavesdropper number and the angle of attack.


quantum key distribution cryptography cloning attacks depolarizing channel eavesdroppers 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    C. H. Bennett and G. Brassard, in: Proceeding of the IEEE International Conference on Computer, Systems, and Signal Processing (Bangalore, India), IEEE Press, New York (1984).Google Scholar
  2. 2.
    D. Bruß, D. P. DiVincenzo, A. Eckert, et al., Phys. Rev. A, 57, 2368 (1998).ADSCrossRefGoogle Scholar
  3. 3.
    N. J. Cerf, Phys. Rev. Lett., 84, 4497 (2000).ADSCrossRefGoogle Scholar
  4. 4.
    V. Bužek and M. Hillery, Phys. Rev. A, 54, 1844 (1996).MathSciNetADSCrossRefGoogle Scholar
  5. 5.
    V. Bužek, S. L. Braunstein, M. Hillery, and D. Bruß, Phys. Rev. A, 56, 3446 (1997).ADSCrossRefGoogle Scholar
  6. 6.
    L. P. Lamoureux, H. Bechmann-Pasquinucci, N. J. Cerf, et al., Phys. Rev. A, 73, 032304 (2006).ADSCrossRefGoogle Scholar
  7. 7.
    H. Ez-Zahraouy and A. Benyoussef, Int. J. Mod. Phys. B, 23, 4755 (2009).ADSCrossRefMATHGoogle Scholar
  8. 8.
    M. Dehmani, H. Ez-Zahraouy, and A. Benyoussef, J. Comput. Sci., 6, 684 (2010).CrossRefGoogle Scholar
  9. 9.
    Iyed Ben Slimen, Olfa Trabelsi, Houria Rezig, et al., J. Comput. Sci., 3, 424 (2007).Google Scholar
  10. 10.
    V. Scarani, A. Acin, G. Ribordy, and N. Gisin, Phys. Rev. Lett., 92, 057901 (2004).ADSCrossRefGoogle Scholar
  11. 11.
    Youn-Chang Jeong, Yong-Su Kim, and Yoon-Ho Kim, “Effects of depolarizing quantum channels on BB84 and SARG04 quantum cryptography protocols,” arXiv:1002.2285v1 [quant-ph].Google Scholar
  12. 12.
    M. Dehmani, M. Errahmani, H. Ez-Zahraouy, and A. Benyoussef, Phys. Scr., 86, 015803 (2012).ADSCrossRefGoogle Scholar
  13. 13.
    M. Hendrych, PHD Thesis, “Experimental quantum cryptography,” Palacký University (2002).Google Scholar
  14. 14.
    K. Moon, Error Correction Coding: Mathematical Methods and Algorithms, Wiley, Blackwell (2005).CrossRefGoogle Scholar
  15. 15.
    C. Paquin, PHD Thesis, “Les codes correcteurs Quantiques et leurs applications Cryptographiques,” Universit´e de Montrèal (2000).Google Scholar
  16. 16.
    C. Adami and N. J. Cerf, Phys. Rev. A, 56, 3470 (1997).MathSciNetADSCrossRefGoogle Scholar
  17. 17.
    P. W. Shor, and J. Preskill, Phys. Rev. Lett., 85, 441 (2000).ADSCrossRefGoogle Scholar
  18. 18.
    K. Tamaki, M. Koashi, and N. Imoto, Phys. Rev. Lett., 90, 167904 (2003).ADSCrossRefGoogle Scholar
  19. 19.
    V. Scarani, Helle Bechmann-Pasquinucci, N. J. Cerf, et al., Rev. Mod. Phys., 81, 1301 (2009).Google Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Mustapha Dehmani
    • 1
  • Hamid Ez-Zahraouy
    • 1
  • Abdelilah Benyoussef
    • 1
  1. 1.Laboratoire de Magn´etisme et de Physique des Hautes Energies, Facult´e des SciencesUniversit´e Mohammed V-AgdalAgdalMorocco

Personalised recommendations