Advertisement

Journal of Russian Laser Research

, Volume 36, Issue 3, pp 211–227 | Cite as

Dynamic Symmetries, Control, and Chaos with Moving Atoms in High-Quality Cavities

  • Sergey V. Prants
Article
  • 45 Downloads

Abstract

We consider dynamic symmetry, quantum control, and dynamic chaos of atoms moving in high-quality cavities. We review the group-theoretical approach to solve the evolution equations in the cavity quantum electrodynamics and control the quantum evolution in a micromaser device. Taking into account the photon recoil effect, we study nonlinear dynamics of the fundamental interactions between two-level atoms and a quantized cavity field. The strongly coupled atom–field system is treated as a quantum–classical hybrid with dynamically coupled quantum and classical degrees of freedom. Interaction of the purely quantum atom–field system with the classical translational atomic degree of freedom results in emergence of classical dynamic chaos from quantum electrodynamics. That chaos is shown to manifest itself in some ranges of the control parameters in the exponential sensitivity of quantum atomic variables to small variations in the initial conditions and in the appearance of dynamic atomic fractals. We discuss how to observe this effect in real experiments. Our findings establish a quantum–classical correspondence in the cavity quantum electrodynamics.

Keywords

cavity quantum electrodynamics quantum control dynamic symmetry dynamic chaos atomic dynamic fractals 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    B. L. Berman (Ed.), Cavity Quantum Electrodynamics, Academic Press, Boston (1994).Google Scholar
  2. 2.
    E. T. Jaynes and E. W. Cummings, Proc. IEEE, 51, 89 (1963).CrossRefGoogle Scholar
  3. 3.
    I. A. Malkin and V. I. Man’ko, Dynamic Symmetries and Coherent States of Quantum Systems [in Russian], Nauka, Moscow (1979).Google Scholar
  4. 4.
    V. P. Karassiov and L. A. Shelepin, Proceedings of the Lebedev Physical Institute [in Russian], Nauka, Moscow (1982), Vol. 144, p. 124.Google Scholar
  5. 5.
    V. P. Karassiov and L. A. Shelepin, Izv. Akad. Nauk SSSR, Ser. Fiz., 46, 997 (1982).Google Scholar
  6. 6.
    F. T. Hioe and C. E. Carroll, Phys. Rev. A, 32, 1541 (1985).ADSCrossRefGoogle Scholar
  7. 7.
    V. V. Dodonov, V. I. Man’ko, and S. M. Chumakov, Proceedings of the Lebedev Physical Institute [in Russian], Nauka, Moscow (1986), Vol. 176, p. 57.MathSciNetGoogle Scholar
  8. 8.
    V. V. Dodonov and V. I. Man’ko, Invariants and the Evolution of Nonstationary Quantum Systems, Proceedings of the Lebedev Physical Institute, Nova Science, Commack, New York (1987), Vol. 183.Google Scholar
  9. 9.
    S. V. Prants, J. Phys. A: Math. Gen., 19, 3457 (1986).MathSciNetADSCrossRefGoogle Scholar
  10. 10.
    S. V. Prants and L. S. Yacoupova, Zh. ´ Eksp. Teor. Fiz., 97, 1140 (1990).Google Scholar
  11. 11.
    S. V. Prants, Phys. Lett. A, 144, 225 (1990).MathSciNetADSCrossRefGoogle Scholar
  12. 12.
    S. V. Prants and L. S. Yacoupova, J. Mod. Opt., 39, 961 (1992).MathSciNetADSCrossRefMATHGoogle Scholar
  13. 13.
    L. E. Kon’kov and S. V. Prants, J. Math. Phys., 37, 1204 (1996).MathSciNetADSCrossRefMATHGoogle Scholar
  14. 14.
    S. V. Prants, J. Russ. Laser Res., 17, 539 (1996).CrossRefGoogle Scholar
  15. 15.
    S. V. Prants, J. Russ. Laser Res., 18, 69 (1997).CrossRefGoogle Scholar
  16. 16.
    M. Ban, Phys. Rev. A, 47, 5093 (1993).MathSciNetADSCrossRefGoogle Scholar
  17. 17.
    S. V. Prants, J. Phys. A: Math. Theor., 44, 265101 (2011).ADSCrossRefGoogle Scholar
  18. 18.
    L. E. Kon’kov and S. V. Prants, JETP Lett., 65, 833 (1997) [Pis’ma Zh´ETF, 65, 801 (1997)].Google Scholar
  19. 19.
    S. V. Prants, L. E. Kon’kov, and I. L. Kirilyuk, Phys. Rev. E, 60, 335 (1999).ADSCrossRefGoogle Scholar
  20. 20.
    S. V. Prants, Phys. Rev. E, 61, 1386 (2000).ADSCrossRefGoogle Scholar
  21. 21.
    S. V. Prants and L. E. Kon’kov, Phys. Rev. E, 61, 3632 (2000).ADSCrossRefGoogle Scholar
  22. 22.
    S. V. Prants and L. E. Kon’kov, JETP Lett., 73, 180 (2001) [Pis’ma Zh´ETF, 73, 200 (2001)].Google Scholar
  23. 23.
    S. V. Prants, JETP Lett., 75, 651 (2002) [Pis’ma Zh´ETF, 75, 777 (2002)].Google Scholar
  24. 24.
    S. V. Prants and V. Yu. Sirotkin, Phys. Rev. A, 64, 033412 (2001).ADSCrossRefGoogle Scholar
  25. 25.
    V. Yu. Argonov and S. V. Prants, J. Exp. Theor. Phys., 96, 832 (2003) [Zh. ´ Eksp. Teor. Fiz., 123, 946 (2003)].Google Scholar
  26. 26.
    V. Yu. Argonov and S. V. Prants, J. Russ. Laser Res., 27, 360 (2006).Google Scholar
  27. 27.
    V. Yu. Argonov and S. V. Prants, Phys. Rev. A, 75, 063428 (2007).Google Scholar
  28. 28.
    V. Yu. Argonov and S. V. Prants, Phys. Rev. A, 78, 043413 (2008).Google Scholar
  29. 29.
    A. Draght, J. Opt. Soc. Am, 72, 372 (1982).ADSCrossRefGoogle Scholar
  30. 30.
    V. I. Man’ko, in: J. Sanchez and K.-B. Wolf (Eds.), Lie Methods in Optics., Lecture Notes in Physics, Springer, New York (1985), Vol. 250.Google Scholar
  31. 31.
    S. V. Prants, Mod. Phys. Lett.A, 8, 2671 (1993).Google Scholar
  32. 32.
    S. V. Prants, Zh. Éksp. Teor. Fiz., 104, 2590 (1993).Google Scholar
  33. 33.
    B. V. Chirikov, Phys. Rep., 52, 263 (1979).MathSciNetADSCrossRefGoogle Scholar
  34. 34.
    G. M. Zaslavsky, Phys. Rep., 80, 157 (1981).MathSciNetADSCrossRefGoogle Scholar
  35. 35.
    D. V. Makarov, M. Yu. Uleysky, and S. V. Prants, Chaos, 14, 79 (2004).ADSCrossRefGoogle Scholar
  36. 36.
    A. L. Virovlyansky, D. V. Makarov, and S. V. Prants, Phys.-Usp., 55, 18 (2012).Google Scholar
  37. 37.
    J. Wei and E. Norman, J. Math. Phys., 4, 576 (1963).MathSciNetADSGoogle Scholar
  38. 38.
    A. I. Maltsev, Dokl. Acad. Sci. USSR, 36, 42 (1942).Google Scholar
  39. 39.
    L. Landau, Phys. Zh. Sowjun., 2, 46 (1932).Google Scholar
  40. 40.
    C. Zener, Proc. Roy. Soc. London A, 137, 696 (1932).ADSCrossRefGoogle Scholar
  41. 41.
    S. V. Prants and L. S. Yakoupova, Opt. Spektrosk., 69, 964 (1990).Google Scholar
  42. 42.
    S. V. Prants, Opt. Comm., 125, 222 (1996).ADSCrossRefGoogle Scholar
  43. 43.
    S. V. Prants, Opt. Spektrosk., 77, 173 (1994).Google Scholar
  44. 44.
    M. Uleysky, L. Kon’kov, and S. Prants, Commun. Nonlinear Sci. Numer. Simul., 8, 329 (2003).ADSCrossRefMATHGoogle Scholar
  45. 45.
    M. V. Budyansky, M. Yu. Uleysky, and S. V. Prants, J. Exp. Theor. Phys., 99, 1018 (2004) [Zh. ´ Eksp. Teor. Fiz., 126, 1167 (2004)].Google Scholar
  46. 46.
    M. V. Budyansky, M. Yu. Uleysky, and S. V. Prants, Physica D, 195, 369 (2004).MathSciNetADSCrossRefMATHGoogle Scholar
  47. 47.
    S. V. Prants, M. V. Budyansky, V. I. Ponomarev, and M. Yu. Uleysky, Ocean Modell., 38, 114 (2011).ADSCrossRefGoogle Scholar
  48. 48.
    S. V. Prants and M. Yu. Uleysky, Phys. Lett. A, 309, 357 (2003).MathSciNetADSCrossRefMATHGoogle Scholar
  49. 49.
    S. V. Prants, M. Yu. Uleysky, and V. Yu. Argonov, Phys. Rev. A, 73, 023807 (2006).ADSCrossRefGoogle Scholar
  50. 50.
    S. V. Prants, Commun. Nonlinear Sci. Numer. Simul., 12, 19 (2007).MathSciNetADSCrossRefMATHGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  1. 1.Laboratory of Nonlinear Dynamical SystemsPacific Oceanological Institute of the Russian Academy of SciencesVladivostokRussia

Personalised recommendations