Journal of Russian Laser Research

, Volume 34, Issue 6, pp 515–522 | Cite as

Acceleration Modes in Fermi Accelerator



We explain Fermi acceleration of particles bouncing in a gravitational field and experiencing a force due to a modulated evanescent laser field. The acceleration strongly depends upon the initial conditions in the phase space and certain modulation amplitude. We study the accelerated modes by the Poincaré surface of sections and Lyapunov exponents. Furthermore, we identify the initial areas of the phase space that support accelerated dynamics and write a mapping for accelerated dynamics. We show that a distinction between accelerated and chaotic evolutions can be made with the help of the aspect ratio. The Lyapunov exponent shows that the accelerated mode supports ordered evolution.


driven system acceleration modes Lyapunov exponent dispersion matter–wave interaction 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    E. Fermi, Phys. Rev., 75, 1169 (1949).ADSCrossRefMATHGoogle Scholar
  2. 2.
    M. Lieberman and A. J. Lichtenberg, Phys. Rev. A, 5, 1852 (1972).ADSCrossRefGoogle Scholar
  3. 3.
    A. J. Lichtenberg and M. A. Lieberman, Regular and Chaotic Dynamics, Springer, New York (1992).CrossRefMATHGoogle Scholar
  4. 4.
    E. D. Leonel, J. K. L. da Silva, and S. O. Kamphorst, Physica A, 331, 435 (2004).ADSCrossRefGoogle Scholar
  5. 5.
    E. D. Leonel, P. V. E. McClintock, and J. K. L. da Silva, Phys. Rev. Lett., 93, 014101 (2004).ADSCrossRefGoogle Scholar
  6. 6.
    E. D. Leonel and P. V. E. McClintock, J. Phys. A: Math. Gen., 38, 425 (2005).MathSciNetADSCrossRefGoogle Scholar
  7. 7.
    R. E. de Carvalho, F. C. Souza, and E. D. Leonel, Phys. Rev. E, 73, 066229 (2006).MathSciNetADSCrossRefGoogle Scholar
  8. 8.
    A. K. Karlis, P. K. Papachristou, F. K. Diakonos, et al., Phys. Rev. Lett., 97, 194102 (2006).ADSCrossRefGoogle Scholar
  9. 9.
    A. K. Karlis, P. K. Papachristou, F. K. Diakonos, et al., Phys. Rev. E, 76, 016214 (2007).ADSCrossRefGoogle Scholar
  10. 10.
    A. Steane, P. Szriftgiser, P. Desbiolles, and J. Dalibard, Phys. Rev. Lett., 74, 4972 (1995).ADSCrossRefGoogle Scholar
  11. 11.
    F. Saif, I. Bialynicki-Birula, M. Fortunato, and W. P. Schleich, Phys. Rev. A, 58, 4779 (1998).ADSCrossRefGoogle Scholar
  12. 12.
    F. Saif, Phys. Rev. E, 62, 6308 (2000).ADSCrossRefGoogle Scholar
  13. 13.
    F. Saif, Phys. Lett. A, 274, 98 (2000).ADSCrossRefMATHGoogle Scholar
  14. 14.
    F. Saif, G. Alber, V. Savichev, and W. P. Schleich, J. Optics B, 2, 668 (2000).ADSCrossRefGoogle Scholar
  15. 15.
    F. Saif, Phys. Rep., 419, 207 (2005).ADSCrossRefGoogle Scholar
  16. 16.
    F. Saif and I. Rehman, Phys. Rev. A, 75, 043610 (2007).ADSCrossRefGoogle Scholar
  17. 17.
    A. V. Milovanov and L. M. Zeleny, Phys. Rev. E, 64, 052101 (2001).ADSCrossRefGoogle Scholar
  18. 18.
    A. Veltri and V. Carbone, Phys. Rev. Lett., 92, 143901 (2004).ADSCrossRefGoogle Scholar
  19. 19.
    K. Kobayakawa, Y. S. Honda, and T. Tamura, Phys. Rev. D, 66, 083004 (2002).ADSCrossRefGoogle Scholar
  20. 20.
    M. A. Malkov, Phys. Rev. E, 58, 4911 (1998).ADSCrossRefGoogle Scholar
  21. 21.
    S. Ulam, in: Proceedings of the 4th Berkeley Symposium on Mathematics, Statistics, and Probability (Berkeley, CA), California University Press (1961), Vol. 3, p. 315.Google Scholar
  22. 22.
    L. D. Pustylnikov, Trans. Moscow Math. Soc., 2 (1978)Google Scholar
  23. 23.
    L. D. Pustylnikov, Theor. Math. Phys., 57, 1035 (1983).MathSciNetCrossRefGoogle Scholar
  24. 24.
    L. D. Pustylnikov, Sov. Math. Dokl., 35, 88 (1987).Google Scholar
  25. 25.
    L. D. Pustylnikov, Russ. Acad. Sci. Sb. Math., 82, 231 (1995).MathSciNetCrossRefGoogle Scholar
  26. 26.
    B. V. Chirikov, Phys. Rep., 52, 263 (1979).MathSciNetADSCrossRefGoogle Scholar
  27. 27.
    G. M. Zaslavsky and U. Frish (Eds.), Levy Flights and Related Topics in Physics, Springer-Verlag (1995).Google Scholar
  28. 28.
    C. G. Aminoff, A. M. Steane, P. Bouyer, et al., Phys. Rev. Lett., 71, 3083 (1993).ADSCrossRefGoogle Scholar
  29. 29.
    A. Steane, P. Szriftgiser, P. Desbiolles, et al., Phys. Rev. Lett., 74, 4972 (1995).ADSCrossRefGoogle Scholar
  30. 30.
    Javed Akram, Khalid Naseer, Inam-ur Rehman, and Farhan Saif, Math. Probl. Eng., 2009, 246438 (2009).CrossRefGoogle Scholar
  31. 31.
    J. Greene, J. Math. Phys., 20, 1183 (1979).ADSCrossRefGoogle Scholar
  32. 32.
    Edson D. Leonel, Juliano A. de Oliveira, Farhan Saif, J. Phys. A: Math. Gen., 44, 302001 (2011).CrossRefGoogle Scholar
  33. 33.
    Farhan Saif and Pierre Meystre, Int. J. Mod. Phys. D, 16, 2593 (2007).ADSCrossRefGoogle Scholar
  34. 34.
    Itzhack Dana and Shmuel Fishman, Physica D, 17, 63 (1985).MathSciNetADSCrossRefMATHGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  1. 1.Department of ElectronicsQuaid-i-Azam UniversityIslamabadPakistan

Personalised recommendations