Advertisement

Journal of Russian Laser Research

, Volume 34, Issue 3, pp 262–266 | Cite as

Properties of the band gap of two-dimensional plasma photonic crystals

  • Jian-xiao Liu
  • Ze-kun Yang
  • Hong Wei Yang
  • Qing-kui Xi
  • Ai Ping Li
  • Xiong You
Article

Abstract

Employing the finite-difference time-domain (FDTD) method, we study the filtering properties of twodimensional plasma photonic crystals. We show that the transmission spectra of the defects in the plasma photonic crystals vary with change in the defect location, its radius, the plasma frequency, and the frequency of electron–ion collisions in the plasma. We demonstrate that the two-dimensional defect structure from the viewpoint of its frequency characteristic (such as an adjustable filter characteristic) is similar to the one-dimensional structure. We find that by changing the parameters of the defect location, the plasma frequency, and the frequency of electron–ion collisions in the plasma, one can obtain different ranges of transmission peaks at different frequencies, which fully reflects the adjustable filter characteristics of the structure. Therefore, the two-dimensional structure is more important than the one-dimensional structure, and it can be used to produce actual microwave devices.

Keywords

two-dimensional defect plasma photonic crystal finite-difference time-domain method adjustable filter characteristics 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Gao Yongfeng and Zhou Ming, Stud. Opt. Commun., 2, 36 (2011).Google Scholar
  2. 2.
    Ma Li, Zhang Hai-feng, and Liu Shao-bin, Acta Phys. Sin., 57, 5089 (2008).Google Scholar
  3. 3.
    Liu Shao-bin, Zhu Chuan-xi, and Yuan Nai-chang, Acta Phys. Sin., 54, 2804 (2005).Google Scholar
  4. 4.
    Guo Bin, Zeng Jinqu, and Zhang Huande, J. Wuhan Univ. Technol. (Transport. Sci. & Eng.), 35, 833 (2011).Google Scholar
  5. 5.
    Hitoshi Hojo and Atsushi Mase, J. Plasma Fusion Res., No. 8, 477 (2009).Google Scholar
  6. 6.
    Guo Bin, Plasma Sci. Technol., 11, 18 (2009).CrossRefGoogle Scholar
  7. 7.
    Liu Song, Liu Shao-bin, and Wang Shen-yun, Opto-Electron. Eng., 37, 146 (2010).Google Scholar
  8. 8.
    Zhang Hai-feng, Liu Shao-bin, and Kong Xiang-kun, Acta Phys. Sin., 60, 025215-8 (2011).Google Scholar
  9. 9.
    Zhang Hai-Feng, Liu Shao-bin, and Kong Xiang-kun, Acta Phys. Sin., 60, 055209-6 (2011).Google Scholar
  10. 10.
    David F. Kelley and Raymond J. Luebbers, IEEE Trans. Antenn. Propagat., 44, 792 (1996).ADSCrossRefGoogle Scholar
  11. 11.
    Mo Jin-jun, Liu Shao-bin, and Yuan Nai-chang, Chin. J. Radio Sci., 17, 69 (2002).Google Scholar
  12. 12.
    Liu Jian-xiao and Yin Zhi-hui, J. Microwaves, 28, 42 (2012).Google Scholar
  13. 13.
    Li Yuan, Zhang Lei, Kang Chunyan, and Zhang Xiaofan, Res. & Prog. SSE, 29, 72 (2009).Google Scholar
  14. 14.
    Liu Qing, Li Chengfang, and Zhang Xiang, Laser J., 23, 72 (2002).Google Scholar
  15. 15.
    Zhu Zhihong, Ye Weimin, Yuan Xiaodong, et al., Acta Opt. Sin., 23, 522 (2003).Google Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Jian-xiao Liu
    • 1
    • 3
    • 4
  • Ze-kun Yang
    • 2
  • Hong Wei Yang
    • 3
    • 4
  • Qing-kui Xi
    • 4
  • Ai Ping Li
    • 3
  • Xiong You
    • 3
  1. 1.School of Electronics and Information EngineeringHengshui UniversityHebeiP.R. China
  2. 2.School of Computer Science and TechnologyXidian UniversityXi’anP.R. China
  3. 3.Department of Physics, College of ScienceNanjing Agricultural UniversityNanjingP. R. China
  4. 4.Institute of Bio-Electronics, College of ScienceNanjing Agricultural UniversityNanjingP. R. China

Personalised recommendations