Advertisement

Journal of Russian Laser Research

, Volume 34, Issue 1, pp 41–49 | Cite as

A driven damped harmonic oscillator in the ket-vector representation of the density operator

  • M. R. Bazrafkan
  • M. Ashrafi
Article

Abstract

By virtue of the entangled-state basis and the ket-vector representation of the density operator, we solve the master equation of a driven damped harmonic oscillator. In this representation, the density operators are mapped to vectors of a two-mode Fock space whose first mode is the system mode and the second mode is a fictitious one. We derive the Glauber–Sudarshan P function of the quantum state.

Keywords

entangled-state basis ket-vector representation master equation phase-space representation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    H. P. Breuer and F. Petruccione, The Theory of Open Quantum Systems, Oxford University Press, UK (2002).MATHGoogle Scholar
  2. 2.
    C. W. Gardiner and P. Zoller, Quantum Noise, Springer, Berlin (2004).MATHGoogle Scholar
  3. 3.
    W. P. Schleich, Quantum Optics in the Phase Space, Wiley/VCH, Berlin (2001).CrossRefGoogle Scholar
  4. 4.
    M. O. Scully and M. S. Zubairy, Quantum Optics, Cambridge University Press, MS, USA (1997).CrossRefGoogle Scholar
  5. 5.
    K. Cahill and R. Glauber, Phys. Rev., 177, 1857 (1969).ADSCrossRefGoogle Scholar
  6. 6.
    K. Cahill and R. Glauber, Phys. Rev., 177, 1882 (1969).ADSCrossRefGoogle Scholar
  7. 7.
    W. H. Louisell, Quantum Statistical Properties of Radiation, Wiley, New York (1973).Google Scholar
  8. 8.
    H. Y. Fan and H. L. Lu, Mod. Phys. Lett. B, 21, 183 (2007).MathSciNetADSMATHCrossRefGoogle Scholar
  9. 9.
    L. Y. Hu and H. Y. Fan, Int. J. Theor. Phys., 48, 3396 (2009).MathSciNetMATHCrossRefGoogle Scholar
  10. 10.
    H. Y. Fan and L. Y. Hu, Opt. Commun., 281, 5571 (2008).ADSCrossRefGoogle Scholar
  11. 11.
    H. Y. Fan and L. Y. Hu, Commun. Theor. Phys., 51, 729 (2009).MathSciNetADSMATHCrossRefGoogle Scholar
  12. 12.
    J. Zhou, H. Y. Fan, and J. Song, Int. J. Theor. Phys., 50, 3149 (2011).MathSciNetMATHCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  1. 1.Physics Department, Faculty of ScienceI. K. I. UniversityQazvinIran

Personalised recommendations