Advertisement

Journal of Russian Laser Research

, Volume 33, Issue 6, pp 547–558 | Cite as

Dynamic properties of wehrl information entropy and wehrl phase distribution for a moving four-level atom

  • S. Abdel-Khalek
  • A. A. Mousa
  • T. A. Nofal
Article

Abstract

We study the dynamics of the von Neumann entropy, Wehrl entropy, and Wehrl phase distribution for a single four-level ladder-type atom interacting with a one-mode cavity field taking into account the atomic motion. We obtain the exact solution of the model using the Schr¨odinger equation under specific initial conditions. Also we investigate the quantum and classical quantifiers of this system in the nonresonant case. We examine the effects of detuning and the atomic motion parameter on the entropies and their density operators. We observe an interesting monotonic relation between the different physical quantities in the case of nonmoving and moving atoms during the time evolution. We show that both the detuning and the atomic motion play important roles in the evolution of the Wehrl entropy, its marginal distributions, entanglement, and atomic populations.

Keywords

Wehrl entropy Wehrl phase distribution von Neumann entropy atomic motion atomic populations entanglement 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    E. T. Jaynes and F. W. Cummings, Proc. IEEE, 51, 89 (1963).CrossRefGoogle Scholar
  2. 2.
    M. Abdel-Aty, Physica A, 313, 471 (2001).ADSCrossRefGoogle Scholar
  3. 3.
    T. M. El-Shahat, S. Abdel-Khalek, M. Abdel-Aty, and A.-S. F. Obada, Chaos, Solitons and Fractals, 18, 289 (2003).Google Scholar
  4. 4.
    T. M. El-Shahat, S. Abdel-Khalek, and A.-S. F. Obada, Chaos, Solitons and Fractals, 26, 1293 (2005).Google Scholar
  5. 5.
    Z. Liu, S. Zhu, and X-Shen Li, J. Mod. Opt., 35, 833 (1988).Google Scholar
  6. 6.
    X.-S. Li, D. L. Lin, and C.-D. Gong, Phys. Rev. A, 36, 5209 (1987).ADSCrossRefGoogle Scholar
  7. 7.
    Z.-D. Liu, X.-S. Li, and D. L. Lin, Phys. Rev. A, 36, 2205 (1987).CrossRefGoogle Scholar
  8. 8.
    C. V. Sukumar and B. Buck, J. Phys. A: Math. Gen., 17, 877 (1984).MathSciNetADSCrossRefGoogle Scholar
  9. 9.
    M. Janowicz and A. Orlowski, Rep. Math. Phys., 54, 57 (2004).MathSciNetADSMATHCrossRefGoogle Scholar
  10. 10.
    Y. Xue, G. Wang, J.-H. Wu, and J.-Y. Gao, Phys. Rev. A, 75, 063832 (2007).ADSCrossRefGoogle Scholar
  11. 11.
    N. H. Abdel-Wahab, J. Phys. B: At. Mol. Opt. Phys., 41, 105502 (2008)ADSCrossRefGoogle Scholar
  12. 12.
    J. von Neumann, Mathematical Foundations of Quantum Mechanics, Princeton University Press (1955).Google Scholar
  13. 13.
    K. Berrada, H. Eleuch, and Y. Hassouni, J. Phys. B: At. Mol. Opt. Phys., 44, 145503 (2011).ADSCrossRefGoogle Scholar
  14. 14.
    K. Berrada, Opt. Commun., 285, 2227 (2012).ADSCrossRefGoogle Scholar
  15. 15.
    K. Berrada and Y. Hassouni, Eur. Phys. J. D, 61, 513 (2011).ADSCrossRefGoogle Scholar
  16. 16.
    K. Berrada, S. Abdel-Khalek, H. Eleuch, and Y. Hassouni, Quantum Inf. Process., [DOI  10.1007/s11128-011-0344-9].
  17. 17.
    A. Wehrl, Rev. Mod. Phys., 50, 221 (1978).MathSciNetADSCrossRefGoogle Scholar
  18. 18.
    A. Wehrl, Rep. Math. Phys., 30, 119 (1991).MathSciNetADSMATHCrossRefGoogle Scholar
  19. 19.
    A. Miranowicz, H. Matsueda, and M. R. B. Wahiddin, J. Phys. A: Math. Gen., 33, 5159 (2000).MathSciNetADSMATHCrossRefGoogle Scholar
  20. 20.
    A. Anderson and J. J. Halliwell, Phys. Rev. D, 48, 2753 (1993).MathSciNetADSCrossRefGoogle Scholar
  21. 21.
    A. Orlowski, H. Paul, and G. Kastelewicz, Phys. Rev. A, 52, 1621 (1995).ADSCrossRefGoogle Scholar
  22. 22.
    A. Miranowicz, J. Bajer, M. R. B. Wahiddin, and N. Imoto, J. Phys. A: Math. Gen., 34, 3887 (2001).MathSciNetADSMATHCrossRefGoogle Scholar
  23. 23.
    K. Piatek and W. Leonski, J. Phys. A: Math. Gen., 34, 4951 (2001).MathSciNetADSMATHCrossRefGoogle Scholar
  24. 24.
    S. Abdel-Khalek and A.-S. F. Obada, Ann. Phys., 325, 2542 (2010).ADSMATHCrossRefGoogle Scholar
  25. 25.
    A.-S. F. Obada and S. Abdel-Khalek, J. Phys. A: Math. Gen., 37, 6573 (2004).MathSciNetADSMATHCrossRefGoogle Scholar
  26. 26.
    S. Abdel-Khalek, Physica A, 387, 779 (2008).ADSCrossRefGoogle Scholar
  27. 27.
    S. Abdel-Khalek, Phys. Scr., 80, 045302 (2009).ADSCrossRefGoogle Scholar
  28. 28.
    S. Abdel-Khalek, S. Barzanjeh, and H. Eleuch, Int. J. Theor. Phys., 50, 2939 (2011).MATHCrossRefGoogle Scholar
  29. 29.
    E. Schmidt, Math. Ann., 63, 433 (1906).CrossRefGoogle Scholar
  30. 30.
    C. H. Bennett, H. J. Berstein, S. Popescu, and B. Schumacher, Phys. Rev. A, 53, 2046 (1996).ADSCrossRefGoogle Scholar
  31. 31.
    M. Abdel-Aty, Mod. Phys. Lett. B, 17, 253 (2003).ADSCrossRefGoogle Scholar
  32. 32.
    X. Liu, Physica A, 286, 588 (2000).ADSCrossRefGoogle Scholar
  33. 33.
    S. J. Phoenix and P. L. Knight, Ann. Phys. (N.Y.), 186, 381 (1988).ADSMATHCrossRefGoogle Scholar
  34. 34.
    S. Abdel-Khalek, K. Berreda, H. Eleuch, and M Abdel-Aty, Opt. Quantum Electron., 42, 887 (2011).Google Scholar

Copyright information

© Springer Science+Business Media New York 2012

Authors and Affiliations

  • S. Abdel-Khalek
    • 1
    • 2
  • A. A. Mousa
    • 1
    • 3
  • T. A. Nofal
    • 1
    • 4
  1. 1.Mathematics DepartmentFaculty of Science Taif UniversityTaifSaudi Arabia
  2. 2.Mathematics DepartmentFaculty of Science Sohag UniversitySohagEgypt
  3. 3.Basic Science DepartmentFaculty of Engineering Menoufia UniversityMenoufiaEgypt
  4. 4.Mathematics DepartmentFaculty of Science Minia UniversityMiniaEgypt

Personalised recommendations