Journal of Russian Laser Research

, Volume 33, Issue 4, pp 387–394 | Cite as

Effect of lattice constant on band-gap energy and optimization and stabilization of high-temperature In x Ga1−x N quantum-dot lasers

  • M. A. Humayun
  • M. A. Rashid
  • F. A. Malek
  • A. N. Hussain


We analyze the effect of the lattice constant on the band-gap energy of In x Ga1−x N and optimize the structure of the device with a separate-confinement heterostructure. To vary the lattice constants, we change the In molar fraction, which permits us to investigate a wide range of the band gap of the active material employed in diode lasers. In x Ga1−x N is a promising active material for high-performance 1.55 μm quantum-dot lasers due to its excellent band-gap-energy stability with respect to temperature variations. The band gap of In x Ga1−x N decreases from 3.4 to 0.7 eV, and the necessary band gap can be achieved by changing the lattice parameters depending on the device application. It has been found that In0.86Ga0.14N can be a promising material for emitting light at a wavelength of 1.55 μm.


quantum dot lattice constant band gap InGaN molar fraction temperature stability 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Mi Zetian and Pallab Bhattacharya, IEEE J. Sel. Top. Quantum Electron., 14(4), 1171 (2008).CrossRefGoogle Scholar
  2. 2.
    I. Alghoraibi, T. Rohel, R. Piron, et al., Appl. Phys. Lett., 91, 261105 (2007).ADSCrossRefGoogle Scholar
  3. 3.
    Y. Arakawa, T. Someya and K. Tachibana, “Growth and physics of nitride-based quantum dots for optoelectronics applications,” in: International Workshop on Nitride Semiconductors (Nagoya, Japan, 2000), IPAP Conf. Series (2000), Vol. 1, p. 403.Google Scholar
  4. 4.
    Y. Arakawa and H. Sakaki, Appl. Phys. Lett., 40, 939 (1982).ADSCrossRefGoogle Scholar
  5. 5.
    A. Salhi, G. Rain‘o, L. Fortunato, et al., IEEE J. Sel. Top. Quantum Electron., 14, 1188 (2008).CrossRefGoogle Scholar
  6. 6.
    D. Bimberg, M. Grundmann, F. Heinrichsdorff, Thin Solid Films, 367, 235 (2000).ADSCrossRefGoogle Scholar
  7. 7.
    L. V. Asryan and R. A. Suris, Int. J. High Speed Electron. Syst., 12, 111 (2002).CrossRefGoogle Scholar
  8. 8.
    S. Franchi, G. Trevisi, L. Seravalli, and P. Frigeri, Prog. Cryst. Growth Character. Mater., 47, 166 (2003).CrossRefGoogle Scholar
  9. 9.
    J. Wu and W. Walukiewicz, Superlattices Microstruct., 34, 63 (2003).ADSCrossRefGoogle Scholar
  10. 10.
    S. Ruffenach, B. Maleyre, O. Briot, and B. Gil, Phys. Status Solidi (c), 2, 826 (2005).ADSCrossRefGoogle Scholar
  11. 11.
    N. Baer, S. Schulz, S. Schumacher, et al., Appl. Phys. Lett., 87, 231114 (2005).ADSCrossRefGoogle Scholar
  12. 12.
    S. Schulz, S. Schumacher, and G. Czychol, Phys. Rev. B, 73, 245327 (2006).ADSCrossRefGoogle Scholar
  13. 13.
    W. Walukiewicz, S. X. Li, J. Wu, et al., J. Cryst. Growth, 269, 119 (2004).ADSCrossRefGoogle Scholar
  14. 14.
    K. Cui, S. Fathololoumi, M. G. Kibria, et al., Nanotechnology, 23, 1 (2012).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2012

Authors and Affiliations

  • M. A. Humayun
    • 1
  • M. A. Rashid
    • 1
  • F. A. Malek
    • 1
  • A. N. Hussain
    • 1
  1. 1.CERE, School of Electrical Systems EngineeringUniversiti Malaysia PerlisArauMalaysia

Personalised recommendations