Advertisement

Journal of Russian Laser Research

, Volume 32, Issue 5, pp 412–421 | Cite as

Comparing energy difference and fidelity of quantum states

  • Victor V. Dodonov
Article

Abstract

We look for upper bounds of the relative energy difference of two pure quantum states with a fixed fidelity between them or upper bounds of the fidelity for a fixed relative energy difference. The results depend on the concrete families of states chosen for the comparison. Exact analytical expressions are found for several popular sets of states: coherent, squeezed vacuum, binomial, negative binomial, and coherent phase states. Their consequence is that to guarantee, for example, a relative energy difference less than 10% for quite arbitrary (unknown) coherent states, the fidelity must exceed the level 0.995. For other kinds of states, the restrictions can be much stronger.

Keywords

Fidelity energy difference harmonic oscillator superpositions of Fock states coherent states squeezed states binomial and negative binomial states phase coherent states “hyper-Poissonian” states 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    R. Jozsa, J. Mod. Opt., 41, 2315 (1994).MathSciNetADSMATHCrossRefGoogle Scholar
  2. 2.
    V. Bargmann, Ann. Math., 59, 1 (1954).MathSciNetMATHCrossRefGoogle Scholar
  3. 3.
    W. K. Wootters, Phys. Rev. D, 23, 357 (1981).MathSciNetADSCrossRefGoogle Scholar
  4. 4.
    S. L. Braunstein and C. M. Caves, Phys. Rev. Lett., 72, 3439 (1994).MathSciNetADSMATHCrossRefGoogle Scholar
  5. 5.
    S. L. Braunstein, C. A. Fuchs, and H. J. Kimble, J. Mod. Opt., 47, 267 (2000).MathSciNetADSGoogle Scholar
  6. 6.
    N. J. Cerf, A. Ipe, and X. Rottenberg, Phys. Rev. Lett., 85, 1754 (2000).ADSCrossRefGoogle Scholar
  7. 7.
    F. Grosshans and P. Grangier, Phys. Rev. A, 64, 010301 (2001).MathSciNetADSCrossRefGoogle Scholar
  8. 8.
    M. Ban, Phys. Rev. A, 69, 054304 (2004).MathSciNetADSCrossRefGoogle Scholar
  9. 9.
    C. M. Caves and K. Wodkiewicz, Phys. Rev. Lett., 93, 040506 (2004).ADSCrossRefGoogle Scholar
  10. 10.
    A. Furusawa, J. L. Sørensen, S. L. Braunstein, et al., Science, 282, 706 (1998).ADSCrossRefGoogle Scholar
  11. 11.
    W. P. Bowen, N. Treps, B. C. Buchler, et al., Phys. Rev. A, 67, 032302 (2003).ADSCrossRefGoogle Scholar
  12. 12.
    T. C. Zhang, K. W. Goh, C. W. Chou, et al., Phys. Rev. A, 67, 033802 (2003).ADSCrossRefGoogle Scholar
  13. 13.
    A. Zavatta, V. Parigi, M. S. Kim, and M. Bellini, New J. Phys., 10, 123006 (2009).CrossRefGoogle Scholar
  14. 14.
    H. P. Specht, C. Nölleke, A. Reiserer, et al., Nature, 473, 190 (2011).ADSCrossRefGoogle Scholar
  15. 15.
    V. V. Dodonov, O. V. Man’ko, V. I. Man’ko, and A. Wünsche, Phys. Scr., 59, 81 (1999).ADSMATHCrossRefGoogle Scholar
  16. 16.
    J. R. Klauder, J. Math. Phys., 4, 1058 (1963).MathSciNetADSCrossRefGoogle Scholar
  17. 17.
    A. M. Perelomov, Commun. Math. Phys., 26, 222 (1972).MathSciNetADSMATHCrossRefGoogle Scholar
  18. 18.
    R. P. Feynman, Phys. Rev., 84, 108 (1951).MathSciNetADSMATHCrossRefGoogle Scholar
  19. 19.
    R. J. Glauber, Phys. Rev., 84, 395 (1951).ADSMATHCrossRefGoogle Scholar
  20. 20.
    K. O. Friedrichs, Mathematical Aspects of the Quantum Theory of Fields, Interscience, New York (1953).MATHGoogle Scholar
  21. 21.
    L. Infeld and J. Plebański, Acta Phys. Polon., 14, 41 (1955).MathSciNetMATHGoogle Scholar
  22. 22.
    J. Anandan and Y. Aharonov, Phys. Rev. Lett., 65, 1697 (1990).MathSciNetADSMATHCrossRefGoogle Scholar
  23. 23.
    S. Abe, Phys. Rev. A, 48, 4102 (1993).ADSCrossRefGoogle Scholar
  24. 24.
    V. V. Dodonov and M. B. Horovits, Phys. Scr. T (2012, in press).Google Scholar
  25. 25.
    Y. Aharonov, H. W. Huang, J. M. Knight, and E. C. Lerner, Lett. Nuovo Cimento, 2, 1317 (1971).CrossRefGoogle Scholar
  26. 26.
    E. Onofri and M. Pauri, Lett. Nuovo Cimento, 3, 35 (1972).MathSciNetGoogle Scholar
  27. 27.
    V. V. Dodonov, I. A. Malkin, and V. I. Man’ko, Physica, 72, 597 (1974).MathSciNetADSCrossRefGoogle Scholar
  28. 28.
    A. Joshi and S. V. Lawande, Opt. Commun., 70, 21 (1989).ADSCrossRefGoogle Scholar
  29. 29.
    K. Matsuo, Phys. Rev. A, 41, 519 (1990).ADSCrossRefGoogle Scholar
  30. 30.
    X.-G. Wang and H.-C. Fu, Int. J. Theor. Phys., 39, 1437 (2000).MathSciNetMATHCrossRefGoogle Scholar
  31. 31.
    J. Liao, X. Wang, L.-A. Wu, and S.-H. Pan, J. Opt. B: Quantum Semiclass. Opt., 3, 302 (2001).ADSCrossRefGoogle Scholar
  32. 32.
    M. C. de Oliveira, S. S. Mizrahi, and V. V. Dodonov, J. Opt. B: Quantum Semiclass. Opt., 5, S271 (2003).CrossRefGoogle Scholar
  33. 33.
    M. S. Abdalla, A.-S. F. Obada, and M. Darwish, Opt. Commun., 274, 372 (2007).ADSCrossRefGoogle Scholar
  34. 34.
    E. C. Lerner, H. W. Huang, and G. E. Walters, J. Math. Phys., 11, 1679 (1970).MathSciNetADSCrossRefGoogle Scholar
  35. 35.
    J. H. Shapiro and S. R. Shepard, Phys. Rev. A, 43, 3795 (1991).MathSciNetADSCrossRefGoogle Scholar
  36. 36.
    E. C. G. Sudarshan, Int. J. Theor. Phys., 32, 1069 (1993).MathSciNetMATHCrossRefGoogle Scholar
  37. 37.
    V. V. Dodonov and S. S. Mizrahi, Ann. Phys., 237, 226 (1995).MathSciNetADSMATHCrossRefGoogle Scholar
  38. 38.
    A. Vourdas, C. Brif, and A. Mann, J. Phys. A: Math. Gen., 29, 5887 (1996).MathSciNetADSMATHCrossRefGoogle Scholar
  39. 39.
    A. Wünsche, J. Opt. B: Quantum Semiclass. Opt., 3, 206 (2001).ADSCrossRefGoogle Scholar
  40. 40.
    S. S. Mizrahi and V. V. Dodonov, J. Phys. A: Math. Gen., 35, 8847 (2002).MathSciNetMATHCrossRefGoogle Scholar
  41. 41.
    K. J. McNeil and D. F. Walls, Phys. Lett. A, 51, 233 (1975).ADSCrossRefGoogle Scholar
  42. 42.
    B. A. Sotskii and B. I. Glazachev, Opt. Spectrosc., 50, 582 (1981).ADSGoogle Scholar
  43. 43.
    Y. Aharonov, E. C. Lerner, H. W. Huang, and J. M. Knight, J. Math. Phys., 14, 746 (1973).MathSciNetADSCrossRefGoogle Scholar
  44. 44.
    D. Stoler, B. E. A. Saleh, and M. C. Teich, Opt. Acta, 32, 345 (1985).MathSciNetADSCrossRefGoogle Scholar
  45. 45.
    C. T. Lee, Phys. Rev. A, 31, 1213 (1985).ADSCrossRefGoogle Scholar
  46. 46.
    A. Vidiella-Barranco and J. A. Roversi, Phys. Rev. A, 50, 5233 (1994).ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2011

Authors and Affiliations

  1. 1.Instituto de FísicaUniversidade de Brasília Caixa Postal 04455BrasíliaBrazil

Personalised recommendations