Skip to main content
Log in

Apertureless near-field laser nanotechnology

  • Published:
Journal of Russian Laser Research Aims and scope

Abstract

We consider apertureless near-field optics that provides subwavelength resolution. We study the enhancement of the electromagnetic field near nanospheres and under the tip of a scanning probe microscope using the finite difference time-domain (FDTD) method. We discuss the mechanisms of field enhancement connected with the system geometry (“lightning rod effect”) and resonance excitation of local plasmon eigenmodes for different materials of the tip and various geometrical parameters of the system. We describe the possible applications in nano-optics and nanotechnology. We present the experimental achievements in apertureless near-field nanolithography.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. B. Jackson and N. J. Halas, Proc. Natl. Acad. Sci., 101, 17930 (2004).

    Article  ADS  Google Scholar 

  2. H. Wang, Y. Wu, B. Lassiter, et al., Proc. Natl. Acad. Sci., 103, 10856 (2006).

    Article  ADS  Google Scholar 

  3. J. W. Liaw, M. K. Kuo, and C. N. Liao, Progress in Electromagnetic Research Symposium, PIERS 2005 (Hangzhou, China, August 22–26, 2005), p. 448.

  4. S. J. Oldenburg, R. D. Averitt, S. L. Westcott, and N. J. Halas, Chem. Phys. Lett., 288, 243 (1998).

    Article  ADS  Google Scholar 

  5. J. Aizpurua, P. Hanarp, D. S. Sutherland, et al., Phys. Rev. Lett., 90, 057401 (2003).

    Article  ADS  Google Scholar 

  6. R. C. Jin, Y. W. Cao, and C. A. Mirkin, Science, 294, 1901 (2001).

    Article  ADS  Google Scholar 

  7. S. Nie and S. R. Emory, Science, 275, 1102 (1997).

    Article  Google Scholar 

  8. H. X. Xu, E. J. Bjerneld, M. Käll, and L. Börjesson, Phys. Rev. Lett., 83, 4357 (1999).

    Article  ADS  Google Scholar 

  9. Yu. E. Lozovik and S. P. Merkulova, Usp. Fiz. Nauk, 169, 348 (1999).

    Article  Google Scholar 

  10. P. Johanson, Phys. Rev. B, 58, 10823 (1998).

    Article  ADS  Google Scholar 

  11. Yu. E. Lozovik, S. V. Chekalin, S. P. Merkulova, et al., in: Proceedings of the International Symposium “Nanostructures’98: Physics and Technology” (St. Petersburg, 1997), Phys. Usp., 42, 284 (1997).

  12. Yu. E. Lozovik and A. V. Klyuchnik, “The dielectric function and collective oscillations in inhomogeneous systems,” in: L. V. Keldysh, D. A. Kirzhnitz, and A. A. Maradudin (eds.), The Dielectric Function and Collective Oscillations in Inhomogeneous Systems. The Dielectric Function of Condensed Systems, Elsevier Science Publishers (1987).

  13. A. Taflove and S. C. Hagness, Computational Electrodynamics: The Finite Difference Time-Domain Method, Artech, Norwood, MA (2000).

  14. R. Ruppin, Phys. Rev. B, 26, 3440 (1982).

    Article  ADS  Google Scholar 

  15. I. E. Mazec, J. Tech. Phys., 70, 10 (2000).

    Google Scholar 

  16. E. A. Taft and H. R. Philipp, Phys. Rev. A, 138, 197 (1964).

    Google Scholar 

  17. E. D. Palik, Handbook of Optical Constants of Solids, Academic Press, New York (1985).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anton A. Kolesnikov.

Additional information

Manuscript submitted by the authors in English on August 31, 2010.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kolesnikov, A.A., Lozovik, Y.E., Merkulova, S.P. et al. Apertureless near-field laser nanotechnology. J Russ Laser Res 31, 599–607 (2010). https://doi.org/10.1007/s10946-010-9180-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10946-010-9180-0

Keywords

Navigation