Advertisement

Journal of Russian Laser Research

, Volume 31, Issue 6, pp 599–607 | Cite as

Apertureless near-field laser nanotechnology

  • Anton A. Kolesnikov
  • Yurii E. Lozovik
  • Svetlana P. Merkulova
  • Alexander V. Merkulov
  • Mikhail A. Anisimov
Article

Abstract

We consider apertureless near-field optics that provides subwavelength resolution. We study the enhancement of the electromagnetic field near nanospheres and under the tip of a scanning probe microscope using the finite difference time-domain (FDTD) method. We discuss the mechanisms of field enhancement connected with the system geometry (“lightning rod effect”) and resonance excitation of local plasmon eigenmodes for different materials of the tip and various geometrical parameters of the system. We describe the possible applications in nano-optics and nanotechnology. We present the experimental achievements in apertureless near-field nanolithography.

Keywords

near field FDTD apertureless near-field optics subwavelength resolution nano-optics nanolithography lightning rod effect 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    J. B. Jackson and N. J. Halas, Proc. Natl. Acad. Sci., 101, 17930 (2004).CrossRefADSGoogle Scholar
  2. 2.
    H. Wang, Y. Wu, B. Lassiter, et al., Proc. Natl. Acad. Sci., 103, 10856 (2006).CrossRefADSGoogle Scholar
  3. 3.
    J. W. Liaw, M. K. Kuo, and C. N. Liao, Progress in Electromagnetic Research Symposium, PIERS 2005 (Hangzhou, China, August 22–26, 2005), p. 448.Google Scholar
  4. 4.
    S. J. Oldenburg, R. D. Averitt, S. L. Westcott, and N. J. Halas, Chem. Phys. Lett., 288, 243 (1998).CrossRefADSGoogle Scholar
  5. 5.
    J. Aizpurua, P. Hanarp, D. S. Sutherland, et al., Phys. Rev. Lett., 90, 057401 (2003).CrossRefADSGoogle Scholar
  6. 6.
    R. C. Jin, Y. W. Cao, and C. A. Mirkin, Science, 294, 1901 (2001).CrossRefADSGoogle Scholar
  7. 7.
    S. Nie and S. R. Emory, Science, 275, 1102 (1997).CrossRefGoogle Scholar
  8. 8.
    H. X. Xu, E. J. Bjerneld, M. Käll, and L. Börjesson, Phys. Rev. Lett., 83, 4357 (1999).CrossRefADSGoogle Scholar
  9. 9.
    Yu. E. Lozovik and S. P. Merkulova, Usp. Fiz. Nauk, 169, 348 (1999).CrossRefGoogle Scholar
  10. 10.
    P. Johanson, Phys. Rev. B, 58, 10823 (1998).CrossRefADSGoogle Scholar
  11. 11.
    Yu. E. Lozovik, S. V. Chekalin, S. P. Merkulova, et al., in: Proceedings of the International Symposium “Nanostructures’98: Physics and Technology” (St. Petersburg, 1997), Phys. Usp., 42, 284 (1997).Google Scholar
  12. 12.
    Yu. E. Lozovik and A. V. Klyuchnik, “The dielectric function and collective oscillations in inhomogeneous systems,” in: L. V. Keldysh, D. A. Kirzhnitz, and A. A. Maradudin (eds.), The Dielectric Function and Collective Oscillations in Inhomogeneous Systems. The Dielectric Function of Condensed Systems, Elsevier Science Publishers (1987).Google Scholar
  13. 13.
    A. Taflove and S. C. Hagness, Computational Electrodynamics: The Finite Difference Time-Domain Method, Artech, Norwood, MA (2000).Google Scholar
  14. 14.
    R. Ruppin, Phys. Rev. B, 26, 3440 (1982).CrossRefADSGoogle Scholar
  15. 15.
    I. E. Mazec, J. Tech. Phys., 70, 10 (2000).Google Scholar
  16. 16.
    E. A. Taft and H. R. Philipp, Phys. Rev. A, 138, 197 (1964).Google Scholar
  17. 17.
    E. D. Palik, Handbook of Optical Constants of Solids, Academic Press, New York (1985).Google Scholar

Copyright information

© Springer Science+Business Media, Inc. 2010

Authors and Affiliations

  • Anton A. Kolesnikov
    • 1
  • Yurii E. Lozovik
    • 1
    • 2
  • Svetlana P. Merkulova
    • 2
  • Alexander V. Merkulov
    • 2
  • Mikhail A. Anisimov
    • 1
  1. 1.Moscow Institute of Physics and Technology (State University)Moscow RegionRussia
  2. 2.Institute of SpectroscopyTroitskRussia

Personalised recommendations