Advertisement

Journal of Russian Laser Research

, Volume 31, Issue 5, pp 495–508 | Cite as

Transfer of microwave radiation in sliding modes of plasma waveguides

  • Igor V. Smetanin
  • Vladimir D. Zvorykin
  • Alexey O. Levchenko
  • Nikolay N. Ustinovsky
Article

Abstract

We study experimentally and theoretically a new regime of the sliding-mode propagation of microwave radiation in plasma waveguides in atmospheric air. We show that a plasma waveguide of large radius (much larger than the wavelength of the signal) can be developed in the photoionization of air molecules by the KrF-laser emission. We demonstrate the transfer of a 38 GHz microwave signal to a distance of up to 60 m. The mechanism of the transfer is determined by total internal reflection of the signal on the optically less dense walls of the waveguide. We perform the calculations for waveguides of various radii and microwave radiation wavelengths and show that the propagation increases with decrease of the wavelengths and reaches several kilometers for submillimeter waves.

Keywords

plasma waveguide sliding mode KrF laser photoionized plasma plasma filaments 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A. N. Kondratenko, Plasma Waveguides [in Russian], Atomizdat, Moscow (1976).Google Scholar
  2. 2.
    G. A. Askar’yan, M. S. Rabinovich, M. M. Savchenko, and A. D. Smirnova, Pisma ZhÉTF, 1, 18 (1965).Google Scholar
  3. 3.
    G. A. Askar’yan, Zh. Éksp. Teor. Fiz., 55, 1400 (1968).Google Scholar
  4. 4.
    G. A. Askaryan and I. M. Rayevsky, Pisma ZhTF, 8, 1131 (1982).Google Scholar
  5. 5.
    V. I. Kolpakov, L. V. Norinsky, and V. S. Rogov, Pisma ZhTF, 17, 67 (1991).Google Scholar
  6. 6.
    V. I. Kolpakov and L. V. Norinsky, Pisma ZhTF, 18 (12), 55 (1992).Google Scholar
  7. 7.
    A. Braun, G. Korn, X. Liu, et al., Opt. Lett., 20, 73 (1995).CrossRefADSGoogle Scholar
  8. 8.
    E. T. J. Nibbering, P. F. Curley, G. Grillon, et al., Opt. Lett., 21, 62 (1996).CrossRefADSGoogle Scholar
  9. 9.
    A. Brodeur, C. Y. Chien, F. A. Ilkov, et al., Opt. Lett., 22, 304 (1997).CrossRefADSGoogle Scholar
  10. 10.
    A. E. Dormidondov, V. V. Valuev, V. L. Dmitriev, et al., Proc. SPIE, 6733, 67332S (2007).CrossRefGoogle Scholar
  11. 11.
    M. Chateauneuf, S. Payeur, J. Dubois, and J.-C. Kieffer, Appl. Phys. Lett., 92, 091104 (2008).CrossRefADSGoogle Scholar
  12. 12.
    R. R. Musin, M. N. Schneider, A. M. Zheltikov, and R. B. Miles, Appl. Opt., 46, 5593 (2007).CrossRefADSGoogle Scholar
  13. 13.
    L. L. Losev, “Parametric transformation of the laser radiation in combined active media and in optical breakdown plasma” [in Russian], PhD Thesis, P. N. Lebedev Physical Institute, Moscow (2003).Google Scholar
  14. 14.
    L. A. Vainshtein, Electromagnetic Waves [in Russian], Radio i Svyaz, Moscow (1988).Google Scholar
  15. 15.
    B. Cros, C. Courtois, G. Matthieussent, et al., Phys. Rev. E, 65, 026405 (2002).CrossRefADSGoogle Scholar
  16. 16.
    F. Dorchies, J. R. Marques, B. Cros, et al., Phys. Rev. Lett., 82, 4655 (1999).CrossRefADSGoogle Scholar
  17. 17.
    S. Jackel, R. Burris, J. Grun, et al., Opt. Lett., 20, 1086 (1995).CrossRefADSGoogle Scholar
  18. 18.
    M. Borghesi, A. J. Mackinnon, R. Gaillard, et al., Phys. Rev. E, 57, R4899 (1988).CrossRefADSGoogle Scholar
  19. 19.
    V. D. Zvorykin, A. O. Levchenko, A. G. Molchanov, et al., Kr. Soobshch. Fiz. FIAN, No. 3 (2010).Google Scholar
  20. 20.
    V. D. Zvorykin, A. O. Levchenko, I. V. Smetanin, and N. N. Ustinovsky, Pisma ZhÉTF, 91, 244 (2010).Google Scholar
  21. 21.
    N. G. Basov, A. D. Vadkovsky, V. D. Zvorykin, et al., Kvantovaya Élektron., 21, 15 (1994).Google Scholar
  22. 22.
    Yu. P. Raizer, Gas Discharge Physics [in Russia], Nauka, Moscow (1987) [English translation: Springer, Berlin (1991)].Google Scholar
  23. 23.
    A. G. Engelhardt, A. V. Phelps, and C. G. Risk, Phys. Rev. A, 135, 1556 (1964).Google Scholar
  24. 24.
    O. A. Gordeyev, A. P. Kalinin, A. L. Komov, et al., Reviews on the Thermophysical Properties of Substances [in Russian], Institute of High Temperatures of the Russian Academy of Sciences, Moscow (1985), Vol. 5, iss. 55.Google Scholar
  25. 25.
    L. Spitzer, Physics of Ionized Gases, Wiley, New York, London (1962).Google Scholar
  26. 26.
    J. A. Stratton, Electromagnetic Theory, McGraw-Hill, London (1941).MATHGoogle Scholar
  27. 27.
    M. Abramowitz and I. A. Stegun, Handbook of Mathematical Functions, National Bureau of Standards (1964).Google Scholar

Copyright information

© Springer Science+Business Media, Inc. 2010

Authors and Affiliations

  • Igor V. Smetanin
    • 1
  • Vladimir D. Zvorykin
    • 1
    • 2
  • Alexey O. Levchenko
    • 1
    • 2
  • Nikolay N. Ustinovsky
    • 1
    • 2
  1. 1.P. N. Lebedev Physical Institute, Russian Academy of SciencesMoscowRussia
  2. 2.Advanced Energy Technologies Ltd.MoscowRussia

Personalised recommendations