Journal of Russian Laser Research

, Volume 31, Issue 4, pp 313–318 | Cite as

Polarization-independent narrow bandpass filter and narrow transmission-angle filter based on photonic heterostructures composed of single-negative materials

  • Yun-tuan Fang
  • Zhong-cheng Liang


We propose a photonic heterostructure consisting of two substructures composed of single-negative materials. Calculating the transmission spectra, we find that only the electromagnetic wave within a narrow bandpass and a narrow range of incident directions can be transmitted through this structure. Such structure can be used as a polarization-independent frequency filter integrated with a direction filter.


photonic heterostructures frequency filter direction filter single-negative materials 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    V. G. Veselago, Sov. Phys. Usp., 10, 509 (1968).CrossRefADSGoogle Scholar
  2. 2.
    J. B. Pendry, Phys. Rev. Lett., 85, 3966 (2000).CrossRefADSGoogle Scholar
  3. 3.
    R. A. Shelby, D. R. Smith, S. C. Nemat-Nasser, and S. Schultz, Appl. Phys. Lett., 78, 489 (2001).CrossRefADSGoogle Scholar
  4. 4.
    R. A. Shelby, D. R. Smith, and S. Schultz, Science, 292, 77 (2001).CrossRefADSGoogle Scholar
  5. 5.
    Z. M. Zhang and C. J. Fu, Appl. Phys. Lett., 80, 1097 (2002).CrossRefADSGoogle Scholar
  6. 6.
    M. Notomi, Phys. Rev. B, 62, 10696 (2000).CrossRefADSGoogle Scholar
  7. 7.
    I. V. Shadrivov, A. A. Sukhorukov, and Y. S. Kivshar, Appl. Phys. Lett., 82, 3820 (2003).CrossRefADSGoogle Scholar
  8. 8.
    A. A. Houck, J. B. Brock, and I. L. Chuang, Phys. Rev. Lett., 90, 137401 (2003).CrossRefADSGoogle Scholar
  9. 9.
    D. R. Smith, W. J. Padilla, D. C. Vier, et al., Phys. Rev. Lett., 84, 4184 (2000).CrossRefADSGoogle Scholar
  10. 10.
    D. R. Smith and N. Kroll, Phys. Rev. Lett., 85, 2933 (2000).CrossRefADSGoogle Scholar
  11. 11.
    Jensen Li, Lei Zhou, C. T. Chan, and P. Sheng, Phys. Rev. Lett., 90, 083901 (2003).CrossRefADSGoogle Scholar
  12. 12.
    Y. Fang and S. He, Phys. Rev. A, 78, 023813 (2008).CrossRefADSGoogle Scholar
  13. 13.
    H. Jiang, H. Chen, H. Li, and Y. Zhang, Appl. Phys. Lett., 83, 5386 (2003).CrossRefADSGoogle Scholar
  14. 14.
    H. Jiang, H. Chen, H. Li, et al., Phys. Rev. E, 69, 066607 (2004).CrossRefADSGoogle Scholar
  15. 15.
    L. G. Wang, H. Chen, and S. Y. Zhu, Phys. Lett. A, 350, 410 (2006).CrossRefADSGoogle Scholar
  16. 16.
    Y.-T. Fang, J. Zhou, and E. Y. B. Pun, Appl. Phys. B, 86, 587 (2007).CrossRefADSGoogle Scholar
  17. 17.
    A. Yariv, Y. Xu, R. K. Lee, and A. Scherer, Opt. Lett., 24, 711 (1999).CrossRefADSGoogle Scholar
  18. 18.
    Simin Feng, J. Merle Elson, and Pamela L. Overfelt, Opt. Express, 13, 4113 (2005).CrossRefADSGoogle Scholar
  19. 19.
    Simin Feng, J. Merle Elson, and Pamela L. Overfelt, Phys. Rev. B, 72, 085117 (2005).CrossRefADSGoogle Scholar
  20. 20.
    D. Mao, Z. Ouyang, Jong C. Wang, and C. P. Liu, Opt. Express., 16, 628 (2008).CrossRefADSGoogle Scholar
  21. 21.
    D. Mao, Z. Ouyang, J. C. Wang, et al., Appl. Phys. B, 90, 127 (2008).CrossRefADSGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2010

Authors and Affiliations

  1. 1.Department of PhysicsZhenjiang Watercraft CollegeZhenjiangChina
  2. 2.College of Optoelectronic Engineering, Center of Optofluidic TechnologyNanjing University of Posts and TelecommunicationsNanjingChina

Personalised recommendations