Journal of Russian Laser Research

, Volume 31, Issue 1, pp 12–21 | Cite as

A fast integrated optical sensor of gaseous substances

  • A. A. Egorov
  • M. A. Egorov
  • A. V. Stavtsev
  • A. G. Timakin
  • T. K. Chekhlova


We consider the design and operation of an absorption integrated optical chemical sensor, which provides control of the content of ammonia and other hazardous gaseous and liquid substances in the air. An integrated optical sensor based on a diffusion waveguide is studied. The advantage of measurement schemes in which an analog signal from the integrated-optical sensor is converted into a digital form to be processed is shown. The limiting sensitivity of such a waveguide-sensor cell istheoretically evaluated. Prospects of using such a type of integrated-optical sensors are discussed.


integrated optical sensor laser radiation waveguide irregularities waveguide modes noise autocorrelation function of roughness data processing 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    T. K. Chekhlova, A. G. Timakin, and K. A. Popov, Instrum. Exp. Tech., 45, 145 (2002).CrossRefGoogle Scholar
  2. 2.
    G. Whitenett, G. K. Stewart, A. B. Culshaw, and W. Johnstone, J. Opt. A: Pure Appl. Opt., 5, S140 (2003).CrossRefADSGoogle Scholar
  3. 3.
    A. A. Egorov, M. A. Egorov, Yu. I. Tsareva, and T. K. Chekhlova, Laser Phys., 17, 50 (2007).CrossRefADSGoogle Scholar
  4. 4.
    R. G. Hunsperger, Integrated Optics Technology, Springer, Berlin (1982).Google Scholar
  5. 5.
    R. Wiesmann, L. Muller, R. Klein, and A. Neyer, in: Proceedings of the 7th European Conference on Integrated Optics (ECIO’95), Delft, The Netherlands (1995), p. 453.Google Scholar
  6. 6.
    A. V. Khomchenko, E. V. Glazunov, I. U. Primak, et al., Pis’ma Zh. Tech. Fiz., 25, 11 (1999).Google Scholar
  7. 7.
    P. V. Lambeck, Sensors and Actuators, 8, 103 (1992).CrossRefGoogle Scholar
  8. 8.
    A. A. Egorov, M. A. Egorov, T. K. Chekhlova, and A. G. Timakin, Kvant. ´ Elektron., 38, 787 (2008).CrossRefADSGoogle Scholar
  9. 9.
    A. M. Prokhorov (ed.), The Great Russian Encyclopedia [in Russian], BRE, Moscow (1992), Vol. 3. 10. B. I. Goroshkov, Radioelectronic Applications: A Reference Manual [in Russian], Radio i Svyaz, Moscow (1984).Google Scholar
  10. 10.
    B. L. Perelman and V. I. Shevelev, Russian Integrated Circuits and Foreign Analogs. A Reference Manual [in Russian], STC Mikrotech., Moscow (1998).Google Scholar
  11. 11.
    K. Wark and C. F. Warner, Air Pollution: Its Origin and Control, Harper & Row, New York (1976).Google Scholar
  12. 12.
    A. A. Egorov, O. I. Grozdova, and Yu. I. Tsareva, Ekol. Promyshl. Rossii, 1, 38 (2006).Google Scholar
  13. 13.
    A. A. Egorov, Quantum Electron., 33, 335 (2003).CrossRefADSGoogle Scholar
  14. 14.
    A. A. Egorov, Quantum Electron., 34, 744 (2004).CrossRefADSGoogle Scholar
  15. 15.
    A. A. Egorov, Laser Phys., 14, 1072 (2004).Google Scholar
  16. 16.
    A. A. Egorov, Opt. Eng., 44, 014601 (2005).CrossRefADSGoogle Scholar
  17. 17.
    A. A. Egorov and L. A. Sevastyanov, Quantum Electron., 39, 566 (2009).CrossRefADSGoogle Scholar
  18. 18.
    T. Tamir (ed.), Integrated Optics, Springer, Berlin (1975).Google Scholar
  19. 19.
    S. A. Akhmanov, Yu. E. Dyakov, and A. S. Chirkin, Introduction to Statistical Radiophysics and Optics [in Russian], Nauka, Moscow (1981).Google Scholar
  20. 20.
    V. Vasilyev and I. Gurov, Computer Processing of Signals as Applied to Interferometric Systems [in Russian], BNV, St. Petersburg (1998).Google Scholar

Copyright information

© Springer Science+Business Media, Inc. 2010

Authors and Affiliations

  • A. A. Egorov
    • 1
  • M. A. Egorov
    • 2
  • A. V. Stavtsev
    • 2
  • A. G. Timakin
    • 2
  • T. K. Chekhlova
    • 2
  1. 1.A. M. Prokhorov General Physics InstituteRussian Academy of SciencesMoscowRussia
  2. 2.Peoples’ Friendship University of RussiaMoscowRussia

Personalised recommendations