Bell-type inequalities and upper bounds for multiqudit states

  • Loran V. Akopyan
  • Vladimir I. Man’ko


Multiqudit systems are studied in the tomographic-probability representation of quantum states. Results of calculations for the Bell-type numbers within the framework of classical probability theory and in quantum tomography are compared. Violations of the Bell-type inequalities are shown explicitly using the method of averaging in the tomographic picture of quantum states.


Bell-type inequalities multiqudit states tomographic probabilities stochastic matrices quantum tomograms 


  1. 1.
    J. S. Bell, Physics, 1, 195 (1964).Google Scholar
  2. 2.
    J. F. Clauser, M. A. Horne, A. Shimony, and R. A. Holt, Phys. Rev. Lett., 23, 880 (1969).CrossRefADSGoogle Scholar
  3. 3.
    A. Matzkin, J. Phys. A: Math. Theor., 41, 085303 (2008).CrossRefADSMathSciNetGoogle Scholar
  4. 4.
    V. A. Andreev, V. I. Manko, O. V. Man’ko, and E. V. Shchukin, Theor. Math. Phys., 140, (2006).Google Scholar
  5. 5.
    W. Feller, An Introduction to Probability Theory and Its Applications, third edition, John Wiley & Sons, Inc. (1968), Vol. 1.Google Scholar
  6. 6.
    D. Collins, N. Gisin, N. Linden, et al., Phys. Rev. Lett., 88, 040404-1 (2002).CrossRefADSMathSciNetGoogle Scholar
  7. 7.
    I. Pitowsky, J. Math. Phys., 49, 012101 (2008).CrossRefADSMathSciNetGoogle Scholar
  8. 8.
    D. Collins and N. Gisin, “A relevant two-qubit Bell inequality inequivalent to the CHSH inequality,” quant-ph/0306129v2 (2003).Google Scholar
  9. 9.
    D. Kaszlikowski, L. C. Kwek, J.-L. Chen, et al., Phys. Rev. A, 65, 032118 (2002).CrossRefADSGoogle Scholar
  10. 10.
    L. V. Akopyan and V. I. Manko, J. Russ. Laser Res., 30, 82 (2009).CrossRefGoogle Scholar
  11. 11.
    S. Manchini, V. I. Man’ko, and P. Tombesi, Phys. Lett. A, 213 (1996).Google Scholar
  12. 12.
    A. Ibort, V. I. Man’ko, G. Marmo, et al., Phys. Scr., 79, 065013 (2009).CrossRefADSGoogle Scholar
  13. 13.
    Y.-C. Wu, P. Badziag, M. Wiesniak, and M. Zukowski, Phys. Rev. A, 77, 032105 (2008).CrossRefADSMathSciNetGoogle Scholar
  14. 14.
    T. Durt, D. Kaszlikowski, and M. Zukowski, Phys. Rev. A, 64, 024101 (2001).CrossRefADSGoogle Scholar
  15. 15.
    M. Zukowski and C. Brukner, Phys. Rev. Lett., 88, 210401 (2002).CrossRefADSMathSciNetGoogle Scholar
  16. 16.
    D. Kaszlikowski, P. Gnacinski, M. Zukowski, et al., Phys. Rev. Lett., 85, 4418 (2000).CrossRefADSGoogle Scholar
  17. 17.
    B. S. Cirel’son, Lett. Math. Phys., 4, 93 (1980).CrossRefADSMathSciNetGoogle Scholar
  18. 18.
    Nicolas Gisin, “Bell inequalities: many questions, a few answers,” quant-ph/0702021v2 (2007).Google Scholar
  19. 19.
    C. Lupo, V. I. Manko, and G. Marmo, J. Phys. A: Math. Gen., 40, 13091 (2007).MATHCrossRefADSMathSciNetGoogle Scholar
  20. 20.
    V. N. Chernega and V. I. Manko, J. Russ. Laser Res., 28, 103 (2007).CrossRefGoogle Scholar
  21. 21.
    V. V. Dodonov and V. I. Man’ko, Phys. Lett. A, 239, 335 (1997).CrossRefADSMathSciNetGoogle Scholar
  22. 22.
    V. I. Man’ko and O. V. Man’ko, J. Exp. Theor. Phys., 85, 430 (1997).CrossRefADSGoogle Scholar
  23. 23.
    R. F. Werner, Phys. Rev. A, 40, 4277 (1989).CrossRefADSGoogle Scholar
  24. 24.
    M. Wiesniak, P. Badziag, and M. Zukowski, Phys. Rev. A, 76, 012110 (2007).CrossRefADSGoogle Scholar
  25. 25.
    Loran V. Akopyan and Vladimir I. Man’ko, “Bell-type inequalities and upper bounds of multiqudit states,” quant-ph/0906.5455v1 (2009).Google Scholar

Copyright information

© Springer Science+Business Media, Inc. 2009

Authors and Affiliations

  1. 1.Moscow Institute of Physics and Technology (State University)Moscow RegionRussia
  2. 2.P. N. Lebedev Physical InstituteRussian Academy of SciencesMoscowRussia

Personalised recommendations