Journal of Russian Laser Research

, Volume 30, Issue 2, pp 157–163 | Cite as

Controlled acceleration of a modulated quantum bouncer



Cold atoms bouncing on a modulated atomic mirror exhibit dynamic localization and acceleration subject to modulated strength. We explain the characteristics of acceleration using accelerated mapping and define control parameters. We show that the effective Planck’s constant plays a vital role in limiting overall linear growth of accelerated atoms with time. For large values of the effective Planck’s constant, the atomic quantum accelerated is seized if the localization window overlaps the accelerated window.


Fermi accelerator quantum bouncer accelerating mapping dynamical localization quantum mapping and unbounded acceleration dynamical delocalization 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    B. V. Chirikov, F. M. Izrailev, and D. L. Shepelyansky, Sov. Sci. Rev., 209, 2 (1987).Google Scholar
  2. 2.
    F. Saif, I. Bialynicki-Birula, M. Fortunato, and W. P. Schleich, Phys. Rev. A, 58, 4779 (1998).CrossRefADSGoogle Scholar
  3. 3.
    M. G. Raizen, Adv. At. Mol. Opt. Phys., 41, 43 (1999).CrossRefGoogle Scholar
  4. 4.
    M. El Ghafar, P. Törmä, V. Savichev, et al., Phys. Rev. Lett., 78, 4181 (1997).CrossRefADSGoogle Scholar
  5. 5.
    G. Alber and P. Zoller, Phys. Rep., 199, 231 (1991).CrossRefADSGoogle Scholar
  6. 6.
    R. Graham and M. Höhnerbach, Phys. Rev. A, 43, 3966 (1991).CrossRefADSMathSciNetGoogle Scholar
  7. 7.
    I. Guarneri and F. Borgonovi, J. Phys. A: Math. Gen., 26, 119 (1993).MATHCrossRefADSMathSciNetGoogle Scholar
  8. 8.
    F. Benvenuto, G. Casati, I. Guarneri, and D. L. Shepelyansky, Z. Phys. B, 84, 159 (1991).CrossRefADSMathSciNetGoogle Scholar
  9. 9.
    R. Lima and D. L. Shepelyansky, Phys. Rev. Lett., 67, 1377 (1991).CrossRefADSGoogle Scholar
  10. 10.
    F. Saif, Phys. Rep., 419, 207 (2005).CrossRefADSGoogle Scholar
  11. 11.
    A. J. Lichtenterg and M. A. Lieberman, Regular and Chaotic Dynamics, Springer, New York (1992).Google Scholar
  12. 12.
    G. M. Zaslavsky, M. Edelman, and B. A. Niyazov, Chaos, 7, 159 (1997).MATHCrossRefADSMathSciNetGoogle Scholar
  13. 13.
    M. B. d’Arcy, R. M. Godun, M. K. Oberthaler, et al., Phys. Rev. E, 64, 056233 (2001).CrossRefADSGoogle Scholar
  14. 14.
    S. Fishman, I. Guarneri, and L. Rebuzzini, Phys. Rev. Lett., 89, 084101 (2002).CrossRefADSGoogle Scholar
  15. 15.
    Yu. B. Ovchinnikov, I. Manek, and R. Grimm, Phys. Rev. Lett., 79, 2225 (1997).CrossRefADSGoogle Scholar
  16. 16.
    M. Hammes, D. Rychtarik, B. Engeser, et al., Phys. Rev. Lett., 90, 173001 (2003).CrossRefADSGoogle Scholar
  17. 17.
    R. M. Godun, M. B. d’Arcy, M. K. Oberthaler, et al., Phys. Rev. A, 62, 013411 (2000).CrossRefADSGoogle Scholar
  18. 18.
    L. D. Pustyl’nikov, Izv. Akad. Nauk SSSR Ser. Mat., 31, 325 (1988).MATHMathSciNetGoogle Scholar
  19. 19.
    L. D. Pustyl’nikov, “Stable and oscillating motions in nonatomic dynamical systems II,” Trudy Moskov. Mat. Obshch., 34, 3 (1977) [Trans. Moscow Math. Soc., 2, 1 (1978)].MATHMathSciNetGoogle Scholar
  20. 20.
    H. Wallis, Phys. Rep., 255, 203 (1995).CrossRefADSGoogle Scholar
  21. 21.
    B. V. Chirikov, Phys. Rep., 52, 263 (1979).CrossRefADSMathSciNetGoogle Scholar
  22. 22.
    G. Casati, I. Guarneri, D. L. Shepelyansky, IEEE J. Quantum Electron., 24, 1420 (1988).CrossRefADSGoogle Scholar
  23. 23.
    H. Risken, The Fokker–Planck Equation: Methods of Solution and Applications, Springer, Berlin/Heidelberg/New York (1996).MATHGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2009

Authors and Affiliations

  1. 1.Department of ElectronicsQuaid-i-Azam UniversityIslamabadPakistan

Personalised recommendations