Journal of Russian Laser Research

, Volume 30, Issue 2, pp 187–192 | Cite as

Propagation of ultrafast pulses in the anomalous-dispersion regime of silicon-on-insulator strip nanowaveguides



The dynamic evolution of ultrafast high-intensity pulses with a 100 fs half-width at 1/e intensity point based on the silicon-on-insulator (SOI) strip nanowaveguides is considered and investigated numerically under the condition of anomalous group-velocity dispersion (GVD) regime. For ultrafast high-intensity pulses propagating in millimeter-long SOI nanowaveguides, the interplay between the dispersion and nonlinear effects such as the two-photon absorption, free-carrier absorption, free-carrier dispersion, and self-phase modulation has to be taken into account, which results in the significant optical wave breaking phenomenon that occurs near the pulse leading edge for an unchirped Gaussian pulse in the anomalous GVD regime. However, when the input Gaussian pulse with linear up-chirp is introduced, the position of the optical wave breaking shifts from the leading pulse edge to its trailing edge along the several millimeters-long SOI nanowaveguides.


integrated optics silicon-on-insulator technology nonlinear optics ultrafast phenomena 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    W. J. Tomlinson, R. H. Stolen, and A. M. Johnson, Opt. Lett., 10, 457 (1985).CrossRefADSGoogle Scholar
  2. 2.
    G. P. Agrawal, P. L. Baldeck, and R. R. Alfano, Opt. Lett., 14, 137 (1989).CrossRefADSGoogle Scholar
  3. 3.
    J. E. Rothenberg, J. Opt. Soc. Am. B, 6, 2392 (1989).CrossRefADSGoogle Scholar
  4. 4.
    D. Anderson, M. Desaix, M. Lisak, and M. L. Quiroga-Teixeiro, J. Opt. Soc. Am. B, 9, 1358 (1992).CrossRefADSGoogle Scholar
  5. 5.
    J. W. Wu, F. G. Luo, Q. T. Zhang, and M. C. Cao, Opt. & Laser. Technol., 41, 360 (2009).CrossRefADSGoogle Scholar
  6. 6.
    Q. Lin, J. D. Zhang, P. M. Fauchet, and G. P. Agrawal, Opt. Express, 14, 4786 (2006).CrossRefADSGoogle Scholar
  7. 7.
    L. Yin, Q. Lin, and G. P. Agrawal, Opt. Lett., 32, 391 (2007).CrossRefADSGoogle Scholar
  8. 8.
    F. D. Leonardis and V. M. N. Passaro, New J. Phys., 9, 3343 (2007).CrossRefGoogle Scholar
  9. 9.
    L. Yin, Q. Lin and G. P. Agrawal, Opt. Lett., 31, 1295 (2006).CrossRefADSGoogle Scholar
  10. 10.
    R. A. Soref and B. R. Bennett, IEEE. J. Quantum. Electron., QE-23, 123 (1987).CrossRefADSGoogle Scholar
  11. 11.
    A. S. Liu, H. S. Rong, M. Paniccia, et al., Opt. Express, 12, 4261 (2004).CrossRefADSGoogle Scholar
  12. 12.
    G. P. Agrawal, Nonlinear Fiber Optics, 3rd ed., Academic Press, San Diego, California (2001), Ch. 3.Google Scholar
  13. 13.
    Q. Lin, J. D. Zhang, P. M. Fauchet, and G. P. Agrawal, Opt. Express, 14, 4786 (2006).CrossRefADSGoogle Scholar
  14. 14.
    R. Dekker, A. Driessen, T. Wahlbrink, et al., Opt. Express, 14, 8336 (2006).CrossRefADSGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2009

Authors and Affiliations

  1. 1.Institute of Optoelectronics Science and College of ScienceHohai UniversityNanjingP. R. China
  2. 2.Wuhan National Laboratory for OptoelectronicsWuhanP. R. China
  3. 3.College of Optoelectronics Science and EngineeringHuazhong University of Science and TechnologyWuhanP. R. China

Personalised recommendations