Advertisement

Journal of Russian Laser Research

, Volume 29, Issue 2, pp 114–122 | Cite as

Dynamics of electromagnetic pulses with wide spectra in semiconductor superlattices

  • M. B. Belonenko
  • S. Yu. Glazov
  • N. E. Meshcheryakova
Article

Abstract

We considered the Maxwell equations for electromagnetic-field propagation in a solid with a one-dimensional semiconductor superlattice of quantum dots in the case where the spectral width of the electromagnetic pulse is sufficient to excite transitions between different minizones. A phenomenological equation was obtained in the form of the classical one-dimensional sine-Gordon equation with the perturbation caused by quantum transitions between the minizones. Quantum behavior of electrons was considered using the microscopic Hamiltonian, in the assumption that the pulse duration is small enough for the phonon effects to be neglected. The equation obtained was analyzed numerically, and cases where the adiabatic perturbation theory for the sine-Gordon equation can be used were found. Numerical solutions were obtained, and the domain where transitions between the minizones play a significant role in the electromagnetic-pulse dynamics was found.

Keywords

superlattice quantum dots minizone sine-Gordon equation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    L. L. Chang, L. Esaki, W. E. Howard, and R. Ludeke, J. Vac. Sci. Technol., 10, 11 (1973).CrossRefADSGoogle Scholar
  2. 2.
    L. V. Keldysh, Fiz. Tverd. Tela, 4, 2265 (1962).Google Scholar
  3. 3.
    L. Esaki and R. Tsu, IBM J. Res. Dev., 14, 61 (1970).CrossRefGoogle Scholar
  4. 4.
    M. Voos, Ann. Telecommun., 43, 357 (1988).Google Scholar
  5. 5.
    A. A. Ignatov and Yu. A. Romanov, Fiz. Tverd. Tela, 17, 3388 (1975).Google Scholar
  6. 6.
    S. V. Kryuchkov, K. A. Popov, and A. I. Shapovalov, Nonlinear Electromagnetic Waves in Superlattices [in Russian], VSPU, Volgograd (1996).Google Scholar
  7. 7.
    S. V. Kryuchkov and A. I. Shapovalov, Fiz. Tverd. Tela, 39, 1470 (1997).Google Scholar
  8. 8.
    S. A. Kozlov and S. V. Sazonov, Zh. Èksp. Teor. Fiz., 111, 404 (1997).Google Scholar
  9. 9.
    Yu. S. Kivshar' and G. P. Agraval, Optical Solitons [Russian translation], Fizmatlit, Moscow (2005).Google Scholar
  10. 10.
    A. Ya. Shik, Fiz. Tekh. Poluprovodn., 6, 1268 (1972).Google Scholar
  11. 11.
    F. G. Bass, A. A. Bulgakov, and A. P. Tetervov, High-Frequency Properties of Semiconductors with Superlattices [in Russian], Nauka, Moscow (1989).Google Scholar
  12. 12.
    L. D. Landau and E. M. Lifshitz, Field Theory [in Russian], Nauka, Moscow 1988).MATHGoogle Scholar
  13. 13.
    S. V. Sazonov, Zh. Èksp. Teor. Fiz., 124, 803 (2003).Google Scholar
  14. 14.
    S. V. Sazonov, Opt. Spektrosk., 95, 666 (2003).Google Scholar
  15. 15.
    E. M. Epshtein, Fiz. Tverd. Tela, 19, 3456 (1977).Google Scholar
  16. 16.
    V. E. Zakharov, S. V. Manakov, S. P. Novikov, and L. P. Pitaevsky, Theory of Solitons [in Russian], Nauka, Moscow (1980).MATHGoogle Scholar
  17. 17.
    R. K. Dodd, J. C. Eilenbeck, J. D. Gibbon, and Y. C. Morris, Solitons and Nonlinear Wave Equations, Academic Press, New York (1984).Google Scholar
  18. 18.
    A. C. Newell, Solitons in Mathematics and Physics, SIAM, Philadelphia (1985).Google Scholar
  19. 19.
    R. Bullough and P. Caudrey (eds), Solitons, Springer, Berlin (1980).MATHGoogle Scholar
  20. 20.
    N. S. Bakhvalov, Numerical Methods (Analysis, Algebra, Ordinary Differential Equations) [in Russian], Nauka, Moscow (1975).Google Scholar

Copyright information

© Springer Science+Business Media, Inc. 2008

Authors and Affiliations

  • M. B. Belonenko
    • 1
  • S. Yu. Glazov
    • 2
  • N. E. Meshcheryakova
    • 1
  1. 1.Laboratory of NanotechnologiesVolgograd Institute of BusinessVolgogradRussia
  2. 2.Volgograd State Pedagogical UniversityVolgogradRussia

Personalised recommendations