Advertisement

Journal of Russian Laser Research

, Volume 28, Issue 3, pp 207–235 | Cite as

Cryogenic fuel targets for inertial fusion: Optimization of fabrication and delivery conditions

  • I. V. Aleksandrova
  • E. R. Koresheva
  • I. E. Osipov
  • S. V. Bazdenkov
  • A. A. Belolipetskiy
  • V. I. Chtcherbakov
  • T. P. Timasheva
  • A. A. Tonshin
  • L. S. Yaguzinskiy
  • V. M. Dorogotovtsev
  • A. A. Akunets
Article

Abstract

The paper addresses the main problems associated with the fabrication of cryogenic fuel targets and their delivery to the irradiation zone of an inertial confinement fusion (ICF) facility. Optimal solutions of these problems have been developed at the Lebedev Physical Institute for the case of free-standing direct-irradiation cryogenic targets. In contrast to the traditional technology, the approach proposed and demonstrated is shown to conform to all requirements of the current ICF program: (a) quality of fuel layering, (b) stability of layering, and (c) minimization of tritium inventory. This technology is the basis for a designed device of introducing cryogenic targets into the chamber of an ISKRA-6 high-power laser facility being developed in Russia.

Keywords

inertial confinement fusion cryogenic target fabrication and delivery tritium inventory fuel layering glassy hydrogen free-standing target microshell 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    W. R. Meier, “An integrated research plan for IFE technology,” in: Book of Abstracts of the First IAEA-TM on Physics and Technology of Inertial Confinement Fusion Energy Targets and Chambers (7–9 June, 2000, Madrid).Google Scholar
  2. 2.
    K. Steinmetz, “Coordination of IFE keep-in-touch research activities in Europe,” in: Book of Abstracts of the First IAEA-TM on Physics and Technology of Inertial Confinement Fusion Energy Targets and Chambers (7–9 June 2000, Madrid).Google Scholar
  3. 3.
    S. Nakai, “Investigation toward inertial fusion energy at ILE Osaka,” in: Book of Abstracts of the First IAEA-TM on Physics and Technology of Inertial Confinement Fusion Energy Targets and Chambers (7–9 June 2000, Madrid).Google Scholar
  4. 4.
    E. I. Moses and C. R. Wuest, Fusion Sci. Technol., 43, 213 (2003).Google Scholar
  5. 5.
    M. L. Andre, “Laser Megajoule project status,” in: C. Labaune (ed.), Inertial Fusion Science and Applications, Elsevier (2000), p. 32.Google Scholar
  6. 6.
    G. A. Kirillov, G. G. Kochemasov, A. V. Bessarab, et al., “Overview of Laser Fusion Program at the Russian Federal Nuclear Center (VNIIEF),” in: Book of Abstracts of the First IAEA-TM on Physics and Technology of Inertial Confinement Fusion Energy Targets and Chambers (7–9 June 2000, Madrid).Google Scholar
  7. 7.
    T. J. B. Collins and S. Skupsky, “OMEGA cryogenic target designs,” Laboratory for Laser Energetics (LLE) Review, Quarterly Rept. (2000), Vol. 82, p. 49.Google Scholar
  8. 8.
    P. W. McKenty, T. S. Sangster, M. Alexander, et al., Phys. Plasm., 11, 2790 (2004).CrossRefADSGoogle Scholar
  9. 9.
    H. M. Roder, G. E. Chailds, R. D. McCarty, and P. E. Angerhoffer, Survey of the Hydrogen Isotopes below their Critical Temperatures, NBS Technical Note (1965), Monograph 74.Google Scholar
  10. 10.
    M. J. Monsler, Yu. A. Merkuliev, and T. Norimatsu, “Target fabrication and positioning,” Energy from Inertial Fusion, IAEA, Vienna (1995), p. 151Google Scholar
  11. 11.
    K. R. Schultz, D. Goodin, and A. Nobile, Nucl. Instrum. Methods A, 464, 109 (2001).CrossRefADSGoogle Scholar
  12. 12.
    I. V. Aleksandrova, A. A. Belolipetsky, and E. R. Koresheva, “State of the problem of cryogenic targets in the current Inertial Fusion Program, Vestnik Russ. Acad. Nat. Sci. [in Russian] (2007, in press).Google Scholar
  13. 13.
    “Elements of power plant design for inertial fusion energy,” Final Report of a Coordinated Research Project 2000–2004, IAEA-TECDOC-1460, IAEA, Vienna (2005), p. 133.Google Scholar
  14. 14.
    D. R. Harding, L. M. Elasky, S. Verbridge, et al., “Formation of deuterium-ice layers in OMEGA targets,” Laboratory for Laser Energetics (LLE) Review, Quarterly Rept. (2004), Vol. 99, p. 160.Google Scholar
  15. 15.
    F. J. Marshall, R. S. Craxton, J. A. Delettrez, et al., Phys. Plasm., 12, 056302 (2005).CrossRefGoogle Scholar
  16. 16.
    D. N. Bittner, G. W. Collins, E. Monsler, and S. Letts, Fusion Technol., 35, 244 (1999).Google Scholar
  17. 17.
    J. Sater, B. Kozioziemski, G. W. Collins, et al., Fusion Technol., 35, 229 (1999).Google Scholar
  18. 18.
    I. E. Osipov, “Study of hydrogen-isotope condensation processes in laser targets and development of devices for the delivery of free-standing cryogenic targets to the focus of the optical system of a thermonuclear installation with E L > 30 kJ,” PhD Thesis [in Russian], P. N. Lebedev Physical Institute, Moscow (1994).Google Scholar
  19. 19.
    R. D. Kreutz, Fusion Technol., 8, 2708 (1988).Google Scholar
  20. 20.
    E. R. Koresheva, I. E. Osipov, and I. V. Aleksandrova, J. Moscow Phys. Soc., 4, 183 (1994).Google Scholar
  21. 21.
    R. W. Petzoldt, Fusion Technol., 34, 831 (1998).Google Scholar
  22. 22.
    E. R. Koresheva, I. V. Aleksandrova, I. E. Osipov, et al., Fusion Sci. Technol., 35, 290 (2003).Google Scholar
  23. 23.
    E. R. Koresheva, I. E. Osipov, S. M. Tolokonnikov, et al., Vopr. Atomn. Nauki Tekh., 2, 11 (2004).Google Scholar
  24. 24.
    M. L. Shmatov, R. W. Petzoldt, and E. I. Valmianski, Fusion Sci. Technol., 35, 312 (2003).Google Scholar
  25. 25.
    B. V. Kuteev, “Interaction of cover and target with Xe gas in the IFE-reaction chamber,” Research Report NIFS-718, National Institute for Fusion Science, Japan (November 2001).Google Scholar
  26. 26.
    I. E. Osipov, E. R. Koresheva, G. D. Baranov, et al., “A device for cryotarget rep-rate delivery in IFE target chamber,” in: Inertial Fusion Science and Application: State of the Art 2001, Elsevier (2002), p. 810.Google Scholar
  27. 27.
    E. R. Koresheva, O. N. Krokhin, I. E. Osipov, et al., “A cryogenic fuel layer, fuel nucleus, and method of its formation,” Russian Federation Patent, Application No. 2001121680 of 9 August 2001 [in Russian].Google Scholar
  28. 28.
    E. R. Koresheva, I. E. Osipov, T. P. Timasheva, and L. S. Yaguzinskiy, J. Phys. D: Appl. Phys., 35, 825 (2002).CrossRefADSGoogle Scholar
  29. 29.
    E. R. Koresheva, “Cryogenic targets for inertial confinement fusion,” Habilitation Thesis [in Russian], P. N. Lebedev Physical Institute, Moscow (2005).Google Scholar
  30. 30.
    R. Wanner and H. Meyer, Phys. Lett. A, 41, 189 (1972).CrossRefADSGoogle Scholar
  31. 31.
    I. A. Gindin, Ya. D. Starodubov, and V. K. Aksyonov, Metallofizika, 2, 49 (1980).Google Scholar
  32. 32.
    P. W. McKenty, “Direct-drive cryogenic target implosion performance on OMEGA,” Report at the 45th Annual Meeting of the American Physical Society, Albuquerque, USA (27–31 October 2003).Google Scholar
  33. 33.
    B. I. Verkin, Properties of Condensed Phases of Hydrogen and Oxygen, Handbook [in Russian], Naukova Dumka, Kiev (1984).Google Scholar
  34. 34.
    B. I. Kidyarov, Kinetics of Crystal Formation from the Liquid Phase [in Russian], Nauka, Novosibirsk (1979).Google Scholar
  35. 35.
    S. A. Dembovsky and E. A. Chechetkina, Glass Formation [in Russian], Nauka, Moscow (1990).Google Scholar
  36. 36.
    K. Sudzuki, H. Fujimoro, and K. Hashimoto, in: I. B. Kekalo (ed.), Amorphous Metals [translated from Japanese into Russian], Metallurgiya, Moscow (1987).Google Scholar
  37. 37.
    G. W. Collins, W. G. Unites, E. R. Mapoles, and T. P. Bernat, Phys. Rev. B, 53, 102 (1996).CrossRefADSGoogle Scholar
  38. 38.
    J. R. Miller, Adv. Cryog. Engi., 34, 669 (1979).Google Scholar
  39. 39.
    Yu. N. Deryugin, V. M. Izgorodin, G. P. Nikolaev, et al., J. Moscow Phys. Soc., 7, 305 (1997).Google Scholar
  40. 40.
    E. R. Koresheva, P. N. Lebedev Physical Institute Reports (Allerton Press), No. 12, 8 (1984).Google Scholar
  41. 41.
    I. V. Aleksandrova, E. R. Koresheva, and I. E. Osipov, J. Moscow Phys. Soc., 3, 85 (1993).Google Scholar
  42. 42.
    K. A. Osipov, Amorphous and Ultradisperse Crystalline Materials [in Russian], Nauka, Moscow (1972).Google Scholar
  43. 43.
    E. R. Koresheva, A. I. Nikitenko, I. E. Osipov, and S. M. Tolokonnikov, “The laser cryotarget formation and its delivery methods developed in the Lebedev Institute,” in: Proceedings ECLIM, Poland (1991), p. 227.Google Scholar
  44. 44.
    I. V. Aleksandrova, E. R. Koresheva, I. E. Osipov, and L. V. Panina, Laser Particle Beams, 6, 539 (1996).Google Scholar
  45. 45.
    D. T. Goodin, N. B. Alexander, L. C. Brown, et al., “Demonstrating a target supply for inertial fusion energy,” in: Proceedings of the Third IAEA RCM on Physics and Technology of IFE Targets and Chambers (11–13 October 2004, Daejon, Korea) [http://aries.ucsd.edu/LIB/MEETINGS/(2004)].
  46. 46.
    T. Norimatsu, “Next step for target technology and power plant design, in: Elements of Power Plant Design for Inertial Fusion Energy, IAEA-TECDOC-1460 (2005), p. 151.Google Scholar
  47. 47.
    S. Skupski, R. Betti, T. J. B. Collins, et al., “High-gain direct-drive target designs for the National Ignition Facility,” in: K. Tanaka (ed.), Inertial Fusion Science and Applications— 2001, Elsevier, (2002), p. 240.Google Scholar
  48. 48.
    I. V. Aleksandrova, E. R. Koresheva, I. E. Osipov, et al., Fusion Technol., 38, 166 (2000).Google Scholar
  49. 49.
    I. V. Aleksandrova, S. V. Bazdenkov, and V. I. Chtcherbakov, Laser Particle Beams, 20, 13 (2002).CrossRefGoogle Scholar
  50. 50.
    I. V. Aleksandrova, S. V. Bazdenkov, V. I. Chtcherbakov, et al., J. Phys. D: Appl. Phys., 37, 1 (2004).CrossRefGoogle Scholar
  51. 51.
    I. V. Aleksandrova, “Cryogenic targets for laser thermonuclear installations with energy E L > 30 kJ,” PhD Thesis [in Russian], P. N. Lebedev Physical Institute, Moscow (1994).Google Scholar
  52. 52.
    M. Volmier, Kinetik der Phasenbildung, Leipzig (1939).Google Scholar
  53. 53.
    S. Nakai and J. Miley, Physics of High Power Laser and Matter Interactions, World Scientific, Singapore (1992).Google Scholar
  54. 54.
    M. P. Malkov, I. B. Danilov, A. G. Zeldovich, and A. B. Fradkov, in: M. P. Malkov (ed.), Reference Book on the Physicotechnical Basics of Cryogenics [in Russian], Energiya, Moscow (1973).Google Scholar
  55. 55.
    O. V. Mazurin, Glass Transition and Stabilization of Inorganic Glasses [in Russian], Nauka, Leningrad (1978).Google Scholar
  56. 56.
    I. V. Zolotukhin and Yu. E. Kalinin, Usp. Fiz. Nauk, 160, 75 (1990).Google Scholar
  57. 57.
    G. M. Bartenev, “The nature of glass transition,” in: Proceedings of the Soviet Union Seminar on New Ideas in Glass Physics (9–10 October 1987, Moscow) [in Russian].Google Scholar
  58. 58.
    L. N. Larikov, V. V. Geichenko, and V. M. Falchenko, Diffuse Processes in Ordered Alloys [in Russian], Naukova Dumka, Kiev (1975).Google Scholar
  59. 59.
    K. Lucke and K. Detert, Acta Metall., 5, 628 (1957).CrossRefGoogle Scholar
  60. 60.
    C. G. Granqvist and T. Claeson, Z. Phys. B, 21, 127 (1974).Google Scholar
  61. 61.
    C. G. Granqvist and T. Claeson, J. Low Temp. Phys., 13, 1 (1973).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2007

Authors and Affiliations

  • I. V. Aleksandrova
    • 1
  • E. R. Koresheva
    • 1
  • I. E. Osipov
    • 1
  • S. V. Bazdenkov
    • 1
  • A. A. Belolipetskiy
    • 2
  • V. I. Chtcherbakov
    • 1
  • T. P. Timasheva
    • 1
  • A. A. Tonshin
    • 3
  • L. S. Yaguzinskiy
    • 3
  • V. M. Dorogotovtsev
    • 1
  • A. A. Akunets
    • 1
  1. 1.P. N. Lebedev Physical InstituteRussian Academy of SciencesMoscowRussia
  2. 2.A. A. Dorodnitsyn Computer CenterRussian Academy of SciencesMoscowRussia
  3. 3.A. N. Belozersky Institute of Physico-Chemical BiologyM. V. Lomonosov Moscow State University Laboratory Building AMoscowRussia

Personalised recommendations