Advertisement

Journal of Russian Laser Research

, Volume 28, Issue 1, pp 48–54 | Cite as

Distributed gain from multilayer photonic crystal fibers with negative-refraction materials

  • Tinggen Shen
  • Mingyang Fang
  • Junfeng Ma
  • Xuehua Song
  • Zhenghua Li
Article

Abstract

Distributed optical amplification from photonic-crystal fibers (PCFs) with layered structure composed of positive-and negative-refraction materials is studied by the finite-difference time-domain method. We found that the transmission spectra, with transmissivity far greater than unity at discrete transmission bands, have a band-gap structure with distributed gain, but the optical gain for defect modes is much smaller than that for transmitting modes, and maxima usually occur at the upper-and lower-band edges. This suggests that PCFs can be employed in dense wavelength-division multiplexed fiber-optics communication systems as transmission media carrying optical signals without crosstalk.

Keywords

transmission spectra multilayer PCFs negative-refraction materials distributed gain 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    T. A. Birks, J. C. Knight, and P. St. J. Russell, “Endlessly single-mode photonic crystal fiber,” Opt. Lett., 22, 960–963 (1997).ADSGoogle Scholar
  2. 2.
    A. Ortigosa-Blanch, J. C. Knight, W. J. Wadsworth, et al., “Highly birefringent photonic crystal fibers,” Opt. Lett., 25, 1325–1327 (2000).ADSGoogle Scholar
  3. 3.
    P. Petropoulos, T. M. Monro, W. Belardi, et al., “2R-regenerative all-optical switch based on a highly nonlinear holey fiber,” Opt. Lett., 26, 1233–1235 (2001).ADSGoogle Scholar
  4. 4.
    Ququan Wang, Shufeng Wang, Wentao Huang, et al., “Ultrafast and large third-order optical nonlinearity of porous nanosized polycrystal LiNbO3 film,” J. Phys. D: Appl. Phys., 35, 430–432 (2002).CrossRefADSGoogle Scholar
  5. 5.
    Jun-Bo Han, Dai-Jian Chen, Sha Ding, et al., “Plasmon resonant absorption and third-order optical nonlinearity in Ag-Ti cosputtered composite films,” J. Appl. Phys., 99, 023526 (2006).Google Scholar
  6. 6.
    J. C. Knight, J. Arriaga, T. A. Birks, et al., “Anomalous dispersion in photonic crystal fiber,” IEEE Photon. Technol. Lett., 12, 807–809 (2000).CrossRefGoogle Scholar
  7. 7.
    F. Poli, F. Adami, M. Foroni, et al., “Optical parametric amplification in all-silica triangular-core photonic crystal fibers,” Appl. Phys. B: Laser Opt., 81, 251–255 (2005).CrossRefADSGoogle Scholar
  8. 8.
    Kristian Hougaard and Frederik D. Nielsen, “Amplifiers and lasers in PCF configurations,” J. Opt. Fiber Commun. Reps, 1, 63–83 (2004).CrossRefGoogle Scholar
  9. 9.
    Gao Mingyi, Jiang Chun, and Hu Weisheng, “Dual-pump broadband fiber optical parametric amplifier with a three-section photonic crystal fiber scheme,” SPIE, Nanofabrication: Technologies, Devices, and Applications, 5623, 300–307 (2005).Google Scholar
  10. 10.
    V. G. Vesolago, “The electrodynamics of substances with simultaneously negative values of ε and μ,” Soviet Phys. Uspekhi, 10, 509–514 (1968).CrossRefGoogle Scholar
  11. 11.
    D. R. Smith and N. Kroll, “Negative refraction index in left-handed materials,” Phys. Rev. Lett., 85, 2933–2936 (2000).CrossRefADSGoogle Scholar
  12. 12.
    J. B. Pendry, “Negative refraction makes a perfect lens,” Phys. Rev. Lett., 85, 3966–3969 (2000).CrossRefADSGoogle Scholar
  13. 13.
    Z. M. Zhang and C. J. Fu, “Unusual photon tunneling in the presence of a 1ayer with a negative refractive index,” Appl. Phys. Lett., 80, l097–1099 (2002).CrossRefADSGoogle Scholar
  14. 14.
    Hideo Kosaka, Takayuki Kawashima, Akihisa Tomigta, et al., “Photonic crystals for microlight wave circuits using wavelength-dependent angular beam steering,” Appl. Phys. Lett., 74, 1370 (1999).CrossRefADSGoogle Scholar
  15. 15.
    Hideo Kosaka, Takayuki Kawashima, Akihisa Tomita, et al., “Superprism phenomena in photonic crystals,” Phys. Rev. B, 58, 10096 (1998).Google Scholar
  16. 16.
    Xianyu Ao and Sailing He, “Negative refraction of left-handed behavior in porous alumina with infiltrated silver at an optical wavelength,” Appl. Phys. Lett., 87, 101112 (2005).Google Scholar
  17. 17.
    Ilya V. Shadrivov, Andrey A. Sukhorukov, and Yuri S. Kivshar, “Nonlinear surface waves in left-handed materials,” Phys. Rev. E, 69, 016617-9 (2004).Google Scholar
  18. 18.
    K. S. Yee, “Numerical solution of initial boundary value problems involving Maxwell’s equations in isotropic media,” IEEE Trans. Antennas Propagation, 14, 302–308 (1966).CrossRefGoogle Scholar
  19. 19.
    Dong Xiaoting, X. S. Rao, Y. B. Gan, B. Guo, and W. Y. Yin, “Perfectly matched layer absorbing boundary condition for left-handed materials,” IEEE Microwave Wireless Components Lett., 14, 301–303 (2004).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2007

Authors and Affiliations

  • Tinggen Shen
    • 1
    • 2
  • Mingyang Fang
    • 1
    • 2
  • Junfeng Ma
    • 1
    • 2
  • Xuehua Song
    • 1
    • 2
  • Zhenghua Li
    • 2
    • 3
  1. 1.Institute of Applied PhysicsJiangsu UniversityZhenjiangChina
  2. 2.Department of Telecommunication EngineeringJiangsu UniversityZhenjiangChina
  3. 3.Communication T&R SectionZhenjiang Watercraft CollegeZhenjiangChina

Personalised recommendations