Journal of Russian Laser Research

, Volume 27, Issue 5, pp 492–505 | Cite as

Multiple-valued logic-protected coding for an optical non-quantum communication line

  • A. L. Antipov
  • A. Yu. Bykovsky
  • N. A. Vasiliev
  • A. A. Egorov


A simple and cheap method of secret coding in an optical line is proposed based on multiple-valued logic. This method is shown to have very high cryptography resources and is designated for bidirectional information exchange in a team of mobile robots, where quantum teleportation coding cannot yet be realized. On the one hand, this method in some situations can be regarded as a rival for cryptography quantum teleportation protocols and, on the other hand, this approach seems to be applicable to optical communication lines in future micro-multi-agent systems.


multiple-valued logic optical-communication line robots secret coding 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    C. H. Benett, G. Brassard, C. Crepeau, R. Jozsa, A. Peres, and W. K. Wootters, Phys. Rev. Lett., 70, 1895 (1993).MathSciNetCrossRefADSGoogle Scholar
  2. 2.
    D. Bouwmeester, J.-W. Pan, M. Mattle, H. Weinfurter, and A. Zeilinger, Nature, 390, 575 (1997).CrossRefADSGoogle Scholar
  3. 3.
    D. C. Rine (Editor), Computer Science and Multiple-Valued Logic: Theory and Applications, North Holland, Amsterdam (1984).MATHGoogle Scholar
  4. 4.
    L. A. Zadeh, The Concept of a Linguistic Variable and Its Application to Approximate Reasoning, Elsevier, New York (1973).Google Scholar
  5. 5.
    E. Cox, The Fuzzy Systems Handbook, Academic Press, Cambridge, MA (1994).MATHGoogle Scholar
  6. 6.
    L. Liu, Opt. Commun., 73, 183 (1989).CrossRefADSGoogle Scholar
  7. 7.
    T. Konishi, J. Tanida, and Y. Ichioka, Appl. Opt., 34, 3097 (1995).ADSCrossRefGoogle Scholar
  8. 8.
    M. L. Arestova and A. Yu. Bykovsky, Quantum Electron., 25, 945 (1995).CrossRefGoogle Scholar
  9. 9.
    H. Itoh, T. Yamada, S. Mukai, et. al., Appl. Opt., 36, 808 (1997).ADSGoogle Scholar
  10. 10.
    E. Gur, D. Mendlovic, and Z. Zalevsky, Appl. Opt., 38, 4354 (1999).ADSCrossRefGoogle Scholar
  11. 11.
    M. Jamshidi, Soft Comput., 1, 42 (1997).Google Scholar
  12. 12.
    A. Gegov, Distributed Fuzzy Control of Multivariable Systems, Kluwer Academic, Dordrecht (1996).MATHGoogle Scholar
  13. 13.
    A. Yu. Bykovsky and Yu. K. Moroko, Kratk. Soobshch. Fiz., 2, 9 (2003).Google Scholar
  14. 14.
    M. Tambe, Artificial Intelligence, 7, 83 (1997).Google Scholar
  15. 15.
    D. Fox, W. Burgard, H. Kruppa, and S. Thrun, Autonomous Robots, 8, 325 (2000).CrossRefGoogle Scholar
  16. 16.
    V. B. Tarasov, From Multiagent Systems to Intellectual Organizations: Philosophy, Psychology, Informatics [in Russian], URSS Publishers, Moscow (2002).Google Scholar
  17. 17.
    A. Yu. Bykovsky, I.V. Vladimirov, and I. N. Kompanets, Radiotekhnika (2006, in press).Google Scholar
  18. 18.
    L. Vaidman, Phys. Rev. A, 49, 1473 (1994).MathSciNetCrossRefADSGoogle Scholar
  19. 19.
    V. N. Gorbachev, A. I. Zhiliba, and A. I. Trubilko, J. Opt. B: Quantum Semiclass. Opt., 3, S25 (2001).MathSciNetCrossRefADSGoogle Scholar
  20. 20.
  21. 21.
  22. 22.
    M. Warneke, B. Liebowitz, and K. Pister, IEEE Computer Magazine (Jan 2001), p. 44.Google Scholar
  23. 23.
    H.-A. Bachor and T. C. Ralph, A Guide to Experiments in Quantum Optics, Second Edition, Wiley-VCH, Weinheim (2004).Google Scholar
  24. 24.
    R. J. Pressley (Editor), Handbook of Lasers with Selected Data on Optical Technology, Chemical Rubber Co., Cleveland (1971).Google Scholar
  25. 25. /
  26. 26.
    G. Korn and T. Korn, Mathematical Handbook for Scientists and Engineers, Mcgraw-Hill, New York (1968).Google Scholar
  27. 27.
    Bruce Schneier, Applied Cryptography. Protocols, Algorithms, and Source Code in C, Wiley, New York (2000).Google Scholar
  28. 28.
    L. K. Grover, “A fast mechanical algorithm for database search,” Proceedings of the 28 Annual ACM Symposium on the Theory of Computing (Philadelphia, Pennsylvania, 22–24 May 1996), p. 212.Google Scholar

Copyright information

© Springer Science+Business Media, Inc. 2006

Authors and Affiliations

  • A. L. Antipov
    • 1
  • A. Yu. Bykovsky
    • 2
  • N. A. Vasiliev
    • 2
  • A. A. Egorov
    • 1
  1. 1.Moscow Engineering Physics Institute (State University)MoscowRussia
  2. 2.P. N. Lebedev Physical InstituteRussian Academy of SciencesMoscowRussia

Personalised recommendations