Journal of Russian Laser Research

, Volume 26, Issue 3, pp 245–251 | Cite as

Conductance Spectra of Carbyne Transverse to Carbon Chains. Is It Related to the Soliton Lattice?

  • Yu. E. Prazdnikov
  • L. S. Lepnev
  • A. D. Bozhko
  • N. D. Novikov


The influence of the thickness of an oriented carbyne film on the conductance of a special sample was investigated with an electric field of up to 1.8 ⋅ 106 V/cm applied transverse to the carbon chains. A steplike dependence of the conductance on the thickness was observed. The general shape of the current-voltage characteristics, IU2.3, changes to IU2 when the thickness corresponding to a rapid change of conductance is attained. The characteristics presumably correspond to the space-charge limited current in the presence or absence of the trap band within the carbyne band gap. We propose the formation of a charge-topological soliton lattice at “magic” thicknesses which results in a layered structure of the film and in a bandlike conduction transverse to the chains.


carbyne soliton lattice 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    R. B. Heimann, S. E. Evsyukov, and L. Kavan, Carbyne and Carbynoid Structures, Kluwer, Dordrecht (1999).Google Scholar
  2. 2.
    R. B. Heimann, J. Kleiman, and N. M. Salansky, Nature, 306, 164 (1983).Google Scholar
  3. 3.
    A. G. Whittaker, Science, 200, 763 (1978).Google Scholar
  4. 4.
    Y. P. Kudryavtsev, S. E. Evsykov, V. G. Babaev, et al., Carbon, 30, 213 (1992).Google Scholar
  5. 5.
    Patent US 6,355 350 B1, Tetracarbon (2002).Google Scholar
  6. 6.
    Patent US 6,454 797 B2, Tetracarbon (2002).Google Scholar
  7. 7.
    V. G. Babaev, M. B. Guseva, and N. F. Savchenko, Poverkhn. Rentgen. Sinkhrotr. Neytron. Issled., 3, 16 (2004).Google Scholar
  8. 8.
    D. P. Ertchak, et al, J. Phys.: Condens. Matter, 11, 855 (1999).Google Scholar
  9. 9.
    S. Kivelson, Phys. Rev. B, 25, 3798 (1982).Google Scholar
  10. 10.
    R. Hosemann, Ber. Bunsenges., 74, 755 (1970).Google Scholar
  11. 11.
    C. S. Casari, A. Li Bassi, L. Ravagnan, et al., Phys. Rev. B, 69, 075422 (2004).Google Scholar
  12. 12.
    K. C. Kao and W. Hwang, Electrical Transport in Solids, Pergamon Press, Oxford-New York-Toronto-Sydney-Paris-Frankfurt (1981).Google Scholar
  13. 13.
    A. Johansson and S. Stafstrom, Phys. Rev. B, 65, 045207 (2002).Google Scholar
  14. 14.
    D. W. Ewing and G. V. Pfeiffer, Chem. Phys. Lett., 86, 365 (1982).Google Scholar
  15. 15.
    E. A. Goresy and G. Donnay, Science, 161, 363 (1968).Google Scholar
  16. 16.
    G. P. Vdovykin, Meteoritics, 7, 547 (1972).Google Scholar
  17. 17.
    S. W. McElvany, M. M. Ross, and J. H. Callahan, Acc. Chem. Res., 25, 162 (1992).Google Scholar
  18. 18.
    R. E. Smalley, Acc. Chem. Res., 25, 98 (1992).Google Scholar

Copyright information

© Springer Science+Business Media, Inc. 2005

Authors and Affiliations

  • Yu. E. Prazdnikov
    • 1
  • L. S. Lepnev
    • 1
  • A. D. Bozhko
    • 2
  • N. D. Novikov
    • 1
    • 2
  1. 1.P. N. Lebedev Physical InstituteRussian Academy of SciencesMoscowRussia
  2. 2.Department of PhysicsM. V. Lomonosov Moscow State UniversityMoscowRussia

Personalised recommendations