Journal of Psycholinguistic Research

, Volume 41, Issue 1, pp 71–82 | Cite as

Implicit Segmentation of a Stream of Syllables Based on Transitional Probabilities: An MEG Study

  • Tuomas Teinonen
  • Minna Huotilainen
Original Paper


Statistical segmentation of continuous speech, i.e., the ability to utilise transitional probabilities between syllables in order to detect word boundaries, is reflected in the brain’s auditory event-related potentials (ERPs). The N1 and N400 ERP components are typically enhanced for word onsets compared to random syllables during active listening. We used magnetoencephalography (MEG) to record event-related fields (ERFs) simultaneously with ERPs to syllables in a continuous sequence consisting of ten repeating tri-syllabic pseudowords and unexpected syllables presented between these pseudowords. We found the responses to differ between the syllables within the pseudowords and between the expected and unexpected syllables, reflecting an implicit process extracting the statistical characteristics of the sequence and monitoring for unexpected syllables.


Statistical learning Word segmentation MEG N400 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Abla D., Katahira K., Okanoya K. (2008) On-line assessment of statistical learning by event-related potentials. Journal of Cognitive Neuroscience 20: 952–964PubMedCrossRefGoogle Scholar
  2. Aslin R. N., Saffran J. R., Newport E. L. (1998) Computation of conditional probability statistics by 8-month-old infants. Psychological Science 9: 321–324CrossRefGoogle Scholar
  3. Chwilla D. J., Brown C. M., Hagoort P. (1995) The N400 as a function of the level of processing. Psychophysiology 32: 274–285PubMedCrossRefGoogle Scholar
  4. Cunillera T., Toro J. M., Sebastián-Gallés N., Rodríguez-Fornells A. (2006) The effects of stress and statistical cues on continuous speech segmentation: An event-related brain potential study. Brain Research 1123: 168–178PubMedCrossRefGoogle Scholar
  5. Davis M. H., Marslen-Wilson W. D. (2002) Leading up the lexical garden path: Segmentation and ambiguity in spoken word recognition. Journal of Experimental Psychology: Human Perception and Performance 28: 218–244CrossRefGoogle Scholar
  6. Hagoort P., Wassenaar M., Brown C. M. (2003) Syntax-related ERP effects in Dutch. Cognitive Brain Research 16: 38–50PubMedCrossRefGoogle Scholar
  7. Hinojosa J. A., Moreno E. M., Casado P., Muñoz F., Pozo M. A. (2005) Syntactic expectancy: An event-related potentials study. Neuroscience Letters 378: 34–39PubMedCrossRefGoogle Scholar
  8. Kutas M., Federmeier K. D. (2000) Electrophysiology reveals semantic memory use in language comprehension. Trends in Cognitive Sciences 4: 463–470PubMedCrossRefGoogle Scholar
  9. Kutas M., Hillyard S. A. (1984) Brain potentials during reading reflect word expectancy and semantic association. Nature 307: 161–163PubMedCrossRefGoogle Scholar
  10. Saffran J. R., Aslin R. N., Newport E. L. (1996) Statistical learning by 8-month-old infants. Science 274: 1926–1928PubMedCrossRefGoogle Scholar
  11. Saffran J. R., Newport E. L., Aslin R. N., Tunick R. A., Barrueco S. (1997) Incidental language learning: Listening and learning out of the corner of your ear. Psychological Science 8: 101–105CrossRefGoogle Scholar
  12. Sanders L. D., Neville H. J. (2003) An ERP study of continuous speech processing I. Segmentation, semantics, and syntax in native speakers. Cognitive Brain Research 15: 228–240PubMedCrossRefGoogle Scholar
  13. Sanders L. D., Newport E. L., Neville H. J. (2002) Segmenting nonsense: An event-related potential index of perceived onsets in continuous speech. Nature Neuroscience 5: 700–703PubMedCrossRefGoogle Scholar
  14. Service E., Helenius P., Maury S., Salmelin R. (2007) Localization of syntactic and semantic brain responses using magnetoencephalography. Journal of Cognitive Neuroscience 19: 1193–1205PubMedCrossRefGoogle Scholar
  15. Tervaniemi M., Kujala A., Alho K., Virtanen J., Ilmoniemi R. J., Nä ätänen R. (1999) Functional specialization of the human auditory cortex in processing phonetic and musical sounds: A magnetoencephalographic (MEG) study. NeuroImage 9: 330–336PubMedCrossRefGoogle Scholar
  16. Toro J. M., Sinnett S., Soto-Faraco S. (2005) Speech segmentation by statistical learning depends on attention. Cognition 97: B25–B34PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  1. 1.Department of Psychology, Cognitive Brain Research UnitInstitute of Behavioural Sciences, University of HelsinkiHelsinkiFinland
  2. 2.BioMag Laboratory, HUSLABHelsinki University Central HospitalHelsinkiFinland
  3. 3.Finnish Centre of Excellence in Interdisciplinary Music ResearchUniversity of JyväskyläJyväskyläFinland

Personalised recommendations