Degradation mechanism of microcystin-LR by Bi2WO6/ZnO/biochar composites

Abstract

In this study, hierarchical porous ZnO photocatalysts were successfully prepared using bionic material rice husk as biological template. Bi2WO6/pure ZnO and Bi2WO6/hierarchical porous ZnO catalysts with different Bi2WO6 doping amounts were prepared via hydrothermal synthesis. The results show that the specific surface area of Bi2WO6/hierarchical porous ZnO catalyst with rice husk as biological template was 131.8505 m2/g, which was 101 m2/g higher than that of Bi2WO6/pure ZnO catalyst without rice husk as biological template. In addition, the hierarchical porous ZnO photocatalyst with rice husk template increased the degradation efficiency of microcystin (MC-LR) by 10.60% compared with commercially available ZnO photocatalyst. When the optimum doping amount was 0.2 mol/mol, the degradation efficiency of MC-LR by 0.2Bi2WO6/hierarchical porous ZnO was 79.0%, which was higher than that of the composite catalyst without rice husk template and single photocatalyst. This study provides a new idea for the degradation of MC-LR by using green photocatalyst.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

References

  1. 1.

    J.-A. Park, S.-M. Jung, J.-W. Choi, J.-H. Kim, S. Hong, S.-H. Lee, Chemosphere 193, 883–891 (2018)

    CAS  PubMed  Article  Google Scholar 

  2. 2.

    S. Lee, J. Kim, B. Choi, G. Kim, J. Lee, J. Environ. Sci. Health C 37(4), 356–370 (2019)

    Article  Google Scholar 

  3. 3.

    Q. Sun, T. Zhang, F. Wang, C. Liu, C. Wu, R. Xie, Y. Zhen, Chemosphere 209, 96–103 (2018)

    CAS  PubMed  Article  Google Scholar 

  4. 4.

    M. Zhang, Y. Wang, X. Wu, Z. Kang, D. Zhang, X. Pan, Chem. Eng. J. 407, 127186 (2021)

    CAS  Article  Google Scholar 

  5. 5.

    X. He, A. Wang, P. Wu, S. Tang, Y. Zhang, L. Li, P. Ding, Sci. Total Environ. 743, 140694 (2020)

    CAS  PubMed  Article  Google Scholar 

  6. 6.

    P. Kumar, K. Hegde, S. Kaur Brar, M. Cledon, A. Kermanshahi-pour, A. Roy-Lachapelle, S. Sauvé, R. Galvez-Cloutier, Chem. Eng. J. 383, 123090 (2019)

    Article  CAS  Google Scholar 

  7. 7.

    J. Sun, L. Bu, L. Deng, Z. Shi, S. Zhou, Chem. Eng. J. 349, 408–415 (2018)

    CAS  Article  Google Scholar 

  8. 8.

    J.-A. Park, B. Yang, J.-H. Kim, J.-W. Choi, H.-D. Park, S.-H. Lee, Chem. Eng. J. 348, 125–134 (2018)

    CAS  Article  Google Scholar 

  9. 9.

    D. Liang, N. Li, J. An, J. Ma, Y. Wu, H. Liu, Sci. Total Environ. 753, 141809 (2021)

    CAS  PubMed  Article  Google Scholar 

  10. 10.

    J. Mao, X. Quan, J. Wang, C. Gao, S. Chen, H. Yu, Y. Zhang, Front. Environ. Sci. Eng. 12(6), 10 (2018)

    Article  CAS  Google Scholar 

  11. 11.

    A. Phuruangrat, P. Prapassornwattana, S. Thongtem, T. Thongtem, Russ. J. Phys. Chem. 94(7), 1464–1470 (2020)

    Article  Google Scholar 

  12. 12.

    M. Malakootian, S. Hamzeh, H. Mahmoudi-Moghaddam, Microchem. J. 158, 105194 (2020)

    CAS  Article  Google Scholar 

  13. 13.

    N. Khadgi, A.R. Upreti, Chemosphere 221, 441–451 (2019)

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  14. 14.

    F. Zhang, H. Peng, S. Jiang, C. Wang, X. Xu, L. Wang, Environ. Sci. Pollut. Res. 26, 8226–8236 (2019)

    CAS  Article  Google Scholar 

  15. 15.

    Ch.V. Reddy, R. Koutavarapu, K.R. Reddy, N.P. Shetti, T.M. Aminabhavi, J. Shim, J. Environ. Manag. 268, 110677 (2020)

    CAS  Article  Google Scholar 

  16. 16.

    S. Natarajan, H.C. Bajaj, R.J. Tayade, J Environ Sci (China) 65, 201–222 (2018)

    Article  Google Scholar 

  17. 17.

    Y. Xu, B. Hu, J. Liu, K. Tao, R. Wang, Y. Ren, X. Zhao, J. Xu, X. Song, J. Am. Ceram. Soc. 103, 1281–1292 (2020)

    CAS  Article  Google Scholar 

  18. 18.

    O.M. Schneider, R. Liang, L. Bragg, I. Jaciw-Zurakowsky, A. Fattahi, S. Rathod, P. Peng, M.R. Servos, Y.N. Zhou, Catalysts 9, 181 (2019)

    Article  CAS  Google Scholar 

  19. 19.

    Q. Gou, H. Li, Q. Zhang, Y. Zhang, Appl. Catal. B 229, 192–203 (2018)

    Article  CAS  Google Scholar 

  20. 20.

    Y. Wang, Y. Cao, H. Li, A. Gong, J. Han, Z. Qian, W. Chao, Environ. Sci. Pollut. Res. 25, 11867–11874 (2018)

    CAS  Article  Google Scholar 

  21. 21.

    J. Macan, M. Ivanko, I. Bukovčan, I. Grčić, A. Gajović, Mater. Sci. Semicond. Process. 97, 48–55 (2019)

    CAS  Article  Google Scholar 

  22. 22.

    C. Sun, Q. Xu, Y. Xie, Y. Ling, Y. Hou, J. Mater. Chem. 6, 1–3 (2018)

    CAS  Google Scholar 

  23. 23.

    L. Zammouri, A. Aboulaich, B. Capoen, M. Bouazaoui, M. Sarakha, M. Stitou, R. Mahiou, Mater. Res. Bull. 106, 162–169 (2018)

    CAS  Article  Google Scholar 

  24. 24.

    P. Amornpitoksuk, S. Suwanboon, C. Randorn, Mater. Sci. Semicond. Process. 84, 50–57 (2018)

    CAS  Article  Google Scholar 

  25. 25.

    G. Chen, Y. Wang, Q. Shen, X. Xiong, S. Ren, G. Dai, C. Wu, Ceram. Int. 46(13), 21304–21310 (2020)

    CAS  Article  Google Scholar 

  26. 26.

    Z. Du, C. Cheng, L. Tan, J. Lan, S. Jiang, L. Zhao, R. Gou, Appl. Surf. Sci. 435, 626–634 (2018)

    CAS  Article  Google Scholar 

  27. 27.

    X. Zhang, P. Yang, B. Yang, Y. Bai, W. Liu, J. Wang, Q. Wang, New J. Chem. 44, 5127–5137 (2020)

    CAS  Article  Google Scholar 

  28. 28.

    R. Koutavarapu, B. Babu, C.V. Reddy, I.N. Reddy, K.R. Reddy, M.C. Rao, T.M. Aminabhavi, M. Cho, D. Kim, J. Shim, J. Environ. Manag. 265, 110504 (2020)

    CAS  Article  Google Scholar 

  29. 29.

    J. Liu, Z. Lou, W. Han, Y. Zhao, P. Li, Mater. Sci. Semicond. Process 106, 104761 (2020)

    CAS  Article  Google Scholar 

  30. 30.

    J. Cheng, Y. Shen, K. Chen, X. Wang, Y. Gou, X. Zhou, R. Bai, Chin. J. Catal. 39, 810–820 (2018)

    CAS  Article  Google Scholar 

  31. 31.

    F. Chen, Y. Ji, Y. Deng, F. Ren, S. Tan, Z. Wang, J. Mater. Sci. 55, 11512–11523 (2020)

    CAS  Article  Google Scholar 

  32. 32.

    A. Cazetta, L. Spessato, S.A.R. Melo, K.C. Bedin, T. Zhang, T. Asefa, T.L. Silva, V.C. Almeida, Int. J. Hydrogen Energy 45, 9669–9682 (2020)

    CAS  Article  Google Scholar 

  33. 33.

    Q. Jin, G. Xie, X. Cai, X. Hu, H. Wang, G. Qiu, W. Wang, D. Zhou, H. Huo, X. Tan, Y. Zhao, RSC Adv. 10, 6121–6128 (2020)

    CAS  Article  Google Scholar 

  34. 34.

    Z. Yang, P. Zhu, C. Yan, D. Wang, D. Fang, L. Zhou, Chemosphere 266, 129175 (2021)

    CAS  PubMed  Article  Google Scholar 

  35. 35.

    W. Liu, T. He, Y. Wang, G. Ning, Z. Xu, X. Chen, X. Hu, Y. Wu, Y. Zhao, Sci. Rep. 10, 11903 (2020)

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  36. 36.

    Z. Zha, Z. Zhang, P. Xiang, H. Zhu, B. Zhou, Z. Sun, S. Zhou, RSC Adv. 11, 1077–1085 (2021)

    CAS  Article  Google Scholar 

  37. 37.

    X. Yu, X. Lin, W. Li, W. Feng, Chem. Res. Chin. Univ. 35(1), 79–84 (2019)

    CAS  Article  Google Scholar 

  38. 38.

    L. Lu, R. Shan, Y. Shi, S. Wang, H. Yuan, Chemosphere 222, 391–398 (2019)

    CAS  PubMed  Article  Google Scholar 

  39. 39.

    Ö. Başgöz, Ö. Güler, Ceram. Int. 46, 370–380 (2020)

    Article  CAS  Google Scholar 

  40. 40.

    W. Wang, J. Fang, H. Chen, N. Bao, C. Lu, Ceram. Int. 45, 2234–2240 (2019)

    CAS  Article  Google Scholar 

  41. 41.

    G.G. Moyo, Z. Hu, M.D. Getahun, Environ. Sci. Pollut. Res. 27, 28679–28694 (2020)

    CAS  Article  Google Scholar 

  42. 42.

    V.T. Dinh, P.A. Thu, N.T. An, D.N.T. Nhan, N.Q. Long, React. Kinet. Mech. Catal. 125, 1039–1054 (2018)

    CAS  Article  Google Scholar 

  43. 43.

    S. He, G. Chen, H. Xiao, G. Shi, C. Ruan, Y. Ma, H. Dai, B. Yuan, X. Chen, X. Yang, J. Colloid Interface Sci. 582, 90–101 (2021)

    CAS  PubMed  Article  Google Scholar 

  44. 44.

    N. Hossain, S. Nizamuddin, G. Grifn, P. Selvakannan, N.M. Mubarak, T.M.I. Mahlia, Sci. Rep. 10, 18851 (2020)

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  45. 45.

    C. Sun, T. Chen, Q. Huang, J. Wang, S. Lu, J. Yan, Environ. Sci. Pollut. Res. 26, 8902–8913 (2019)

    CAS  Article  Google Scholar 

  46. 46.

    W. Wang, H. Chen, J. Fang, M. Lai, Appl. Surf. Sci. 467–468, 1187–1194 (2019)

    Article  CAS  Google Scholar 

  47. 47.

    A. Pastor, J. Balbuena, M. Cruz-Yusta, I. Pavlovic, L. Sánchez, Chem. Eng. Sci. 368, 659–667 (2019)

    CAS  Article  Google Scholar 

  48. 48.

    C. Huang, H. Chen, L. Zhao, X. He, W. Li, W. Fang, G. Wang, Photochem. Photobiol. 94, 512–520 (2018)

    CAS  Article  Google Scholar 

  49. 49.

    J. Duan, M. Liu, Y. Guo, W. Wang, Z. Zhang, C. Li, J. Phys. D 53, 165101 (2020)

    CAS  Article  Google Scholar 

  50. 50.

    Y. Liu, X. Zhang, B. Wu, H. Zhao, W. Zhang, C. Shan, J. Yang, Q. Liu, ChemistrySelect 4, 12445–12454 (2019)

    CAS  Article  Google Scholar 

  51. 51.

    X. Jin, H. Liu, J. Mater. Sci. Mater. Electron. 31, 18745–18754 (2020)

    Article  CAS  Google Scholar 

  52. 52.

    Z. Zhang, L. Luhua, Z. Lv, Y. Chen, H. Jin, S. Hou, L. Qiu, L. Duan, J. Liu, K. Dai, Appl. Catal. B 232, 384–390 (2018)

    CAS  Article  Google Scholar 

  53. 53.

    X. Yu, X. Lin, W. Feng, W. Li, Appl. Surf. Sci. 465, 223–231 (2019)

    CAS  Article  Google Scholar 

  54. 54.

    Y. Tan, Z. Shu, J. Zhou, T. Li, W. Wang, Z. Zhao, Appl. Catal. B 230, 260–268 (2018)

    CAS  Article  Google Scholar 

Download references

Acknowledgements

Our work was supported by the National Natural Science Foundation of China (Grant No. 51778267), the National Water Pollution Control and Treatment Science and Technology Major Project (No. 2012ZX07408001), the Jilin Province Science and Technology Department Project (No. 20190201113JC), the Jilin Provincial Department of Ecology and Environment Project (No. 2019-15).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Yingzi Lin.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Lin, Y., Zhang, D., Ji, L. et al. Degradation mechanism of microcystin-LR by Bi2WO6/ZnO/biochar composites. J Porous Mater (2021). https://doi.org/10.1007/s10934-021-01051-x

Download citation

Keywords

  • Microcystin-LR (MC-LR)
  • Rice husk
  • Zinc oxide
  • Bismuth tungstate
  • Photocatalyst