Compressive properties of porous Cu reinforced by inserting copper pillars or tubes

Abstract

Open-cell metal foams suffer from severe deterioration in mechanical properties due to their enriched three-dimensional interconnected holes. In this paper, reinforcing copper pillar(s) or tube(s) are embedded into the foam matrix to form “composite” structure to enhance the open-cell copper foams. To do this, a simple positioning device is designed for preparation of the green porous copper aligned with directional through hole(s) based on a tapping method. Then the reinforcing pillar(s) or tube(s) are inserted into the hole(s) and sintered together. By this means, the mechanical properties of the copper foams are significantly improved. The energy absorption capacity of the composite foams has also been improved because of a higher and wider yield platform compared with the unreinforced copper foams.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

References

  1. 1.

    W. Li, H. Jia, C. Pu, X. Liu, J. Xie, Cell wall buckling mediated energy absorption in lotus-type porous copper. J. Mater. Sci. Technol. 96, 82–94 (2015)

    Google Scholar 

  2. 2.

    M. Vesenjak, K. Hokamoto, M. Sakamoto, T. Nishi, L. Krstulović-Opara, Z. Ren, Mechanical and microstructural analysis of unidirectional porous (UniPore) copper. Mater. Des. 90, 867–880 (2016)

    CAS  Article  Google Scholar 

  3. 3.

    M.F. Ashby, R.F. MehlMedalist, The mechanical properties of cellular solids. Metall. Mater. Trans. A 14A, 1755–1769 (1983)

    Article  Google Scholar 

  4. 4.

    P. Lhuissier, Structural properties of solid foams. C. R. Phys. 15, 696–704 (2014)

    CAS  Article  Google Scholar 

  5. 5.

    C. Kılıçaslan, Numerical crushing analysis of aluminum foam-filled corrugated single- and double-circular tubes subjected to axial impact loading. Thin Wall Struct. 96, 82–94 (2015)

    Article  Google Scholar 

  6. 6.

    M.F. Ashby, T. Lu, Metal foams: a survey. Sci. China Ser. B 46, 521–532 (2003)

    CAS  Article  Google Scholar 

  7. 7.

    A.M. Parvanian, M. Panjepour, Mechanical behavior improvement of open-pore copper foams synthesized through space holder technique. Mater. Des. 49, 834–841 (2013)

    CAS  Article  Google Scholar 

  8. 8.

    L.P. Zhang, Y.Y. Zhao, Fabrication of high melting-point porous metals by lost carbonate sintering porous process via decomposition route. Proc. Inst. Mech. Eng. B 222, 267–271 (2008)

    CAS  Article  Google Scholar 

  9. 9.

    N. Bekoz, E. Oktay, Mechanical properties of low alloy steel foams: dependency on porosity and pore size. Mater. Sci. Eng. A 576, 82–90 (2013)

    CAS  Article  Google Scholar 

  10. 10.

    S.W. Kim, H.D. Jung, M.H. Kang, H.E. Kim, Y.H. Koh, Y. Estrin, Fabrication of porous titanium scaffold with controlled porous structure and net-shape using magnesium as spacer. Mater. Sci. Eng. C 33, 2808–2815 (2013)

    CAS  Article  Google Scholar 

  11. 11.

    A. Jinnapat, A.R. Kennedy, The manufacture of spherical salt beads and their use as dissolvable templates for the production of cellular solids via a powder metallurgy route. J. Alloys Compd. 499, 43–47 (2010)

    CAS  Article  Google Scholar 

  12. 12.

    B. Lee, T. Lee, Y. Lee, D.J. Lee, J. Jeong, J. Yuh, S.H. Oh, H.S. Kim, C.S. Lee, Space-holder effect on designing pore structure and determining mechanical properties in porous titanium. Mater. Des. 57, 712–718 (2014)

    CAS  Article  Google Scholar 

  13. 13.

    D.P. Mondal, M. Patel, S. Das, A.K. Jha, H. Jain, G. Gupta, S.B. Arya, Titanium foam with coaser cell size and wide range of porosity using different types of evaporative space holders through powder metallurgy route. Mater. Des. 63, 89–99 (2014)

    CAS  Article  Google Scholar 

  14. 14.

    D.C. Dunand, Processing of titanium foams. Adv. Eng. Mater. 6, 369–376 (2004)

    CAS  Article  Google Scholar 

  15. 15.

    J. Jia, A.R. Siddiq, A.R. Kennedy, Porous titanium manufactured by a novel powder tapping method using spherical salt bead space holders: characterisation and mechanical properties. J. Mech. Behav. Biomed. 48, 229–240 (2015)

    CAS  Article  Google Scholar 

  16. 16.

    M. Sabzevari, S.A. Sajjadi, A. Moloodi, Physical and mechanical properties of porous copper nanocomposite produced by powder metallurgy. Adv. Powder Technol. 27, 105–111 (2016)

    CAS  Article  Google Scholar 

  17. 17.

    M. Sharma, O.P. Modi, P. Kumar, Experimental modelling of copper foams processed through powder metallurgy route using a compressible space holder material. J. Porous Mater. 24, 1581–1593 (2017)

    CAS  Article  Google Scholar 

  18. 18.

    M.H. Shahzeydi, A.M. Parvanian, M. Panjepour, The distribution and mechanism of pore formation in copper foams fabricated by Lost Carbonate Sintering method. Mater. Charact. 111, 21–30 (2016)

    CAS  Article  Google Scholar 

  19. 19.

    C. Waters, M. Salih, S. Ajinola, Porosity comparative analysis of porous copper and OOF Modelling. J. Porous Mater. 22, 989–995 (2015)

    CAS  Article  Google Scholar 

  20. 20.

    J. Ru, B. Kong, Y. Liu, X. Wang, T. Fan, D. Zhang, Microstructure and sound absorption of porous copper prepared by resin curing and foaming method. Mater. Lett. 139, 318–321 (2015)

    CAS  Article  Google Scholar 

  21. 21.

    M. Li, Y. Su, J. Hu, H. Geng, H. Wei, Z. Yang, Y. Zhang, Hydrothermal synthesis of porous copper microspheres towards efficient 4-nitrophenol reduction. Mater. Res. Bull. 83, 329–335 (2016)

    CAS  Article  Google Scholar 

  22. 22.

    H. Nakajima, S.K. Hyun, K. Ohashi, K. Ota, K. Murakami, Fabrication of copper by unidirectional solidification under hydrogen and its properties. Colloid Surf. A 179, 209–214 (2001)

    CAS  Article  Google Scholar 

  23. 23.

    H. Seki, M. Tane, M. Otsuka, H. Nakajima, Effects of pore morphology on fatigue and fracture surface of lotus-type porous copper. J. Mater. Res. 22, 1331–1338 (2007)

    CAS  Article  Google Scholar 

  24. 24.

    S.K. Hyun, K. Murakami, H. Nakajima, Anisotropic mechanical properties of porous copper fabricated by unidirectional solidification. Mater. Sci. Eng. A 299, 241–248 (2001)

    Article  Google Scholar 

  25. 25.

    Z. Tang, D. Li, Quasi-static axial buckling behavior of NiTi thin-walled cylindrical shells. Thin Wall Struct. 51, 130–138 (2012)

    Article  Google Scholar 

  26. 26.

    R. Sliž, M.Y. Chang, Reliable and accurate prediction of the experimental buckling of thin-walled cylindrical shell under an axial load. Thin Wall Struct. 49, 409–421 (2011)

    Article  Google Scholar 

  27. 27.

    X. Luo, J. Xu, J. Zhu, Y. Gao, L. Nie, W. Li, A new method to investigate the energy absorption characteristics of thin-walled metal circular tube using finite element analysis. Thin Wall Struct. 95, 24–30 (2015)

    Article  Google Scholar 

  28. 28.

    D. Karagiozova, N. Jones, Dynamic effects on buckling and energy absorption of cylindrical shells under axial impact. Thin Wall Struct. 39, 583–610 (2001)

    Article  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (no.51461029).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Jiangang Jia.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Jia, J., Jing, Y., Liu, D. et al. Compressive properties of porous Cu reinforced by inserting copper pillars or tubes. J Porous Mater (2021). https://doi.org/10.1007/s10934-021-01049-5

Download citation

Keywords

  • Copper foam
  • Porous structure
  • Mechanical properties
  • Strengthening