FeAl/Al2O3 porous composite microfiltration membrane for highly efficiency high‐temperature particulate matter capturing

Abstract

Particulate matter (PM) pollution has raised serious concerns for public health. FeAl intermetallic porous membrane with extensive interconnected pores are potential candidates as functional materials for high-temperature particulate matter (PM) capturing. However, it remains a big challenge to fabricate FeAl intermetallic porous membrane simultaneously satisfy the requirements of good formability and excellent filter fineness. Here, we introduce a FeAl/Al2O3 porous composite microfiltration membrane (PCMM) for highly efficiency high temperature flue gas purification. The FeAl/Al2O3 PCMM was fabricated by powder metallurgy method via the combination of mutual diffusion and chemical reaction. By separation of simulated high-temperature flue gas, we achieve an ultra-high PM removal efficiency (96.2% for PM2.5, and 99.3% for PM2.5–10, respectively). These features, combined with our experimental design strategy, provide a new insight into designing high-temperature PM filtration membrane materials with high performance and durability.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. 1.

    A. Nel, Air pollution-related illness: effects of particles. Science 308, 804–806 (2005)

    CAS  Article  Google Scholar 

  2. 2.

    M.R. Miller, J. Raftis, J.P. Langrish, S.G. Mclean, P. Samutrtai, S.P. Connell, S. Wilson, A.T. Vesey, P.H.B. Fokkens, A.J.F. Boere, P. Krystek, C. Campbell, P.W.F. Hadoke, K. Donaldson, F.R. Cassee, D.E. Newby, R. Duffin, N.L. Mills. Inhaled nanoparticles accumulate at sites of vascular disease. ACS Nano 11, 4542–4552 (2017)

    CAS  Article  Google Scholar 

  3. 3.

    D.L. Fang, B. Chen, K. Hubacek, R.J. Ni, L.L. Chen, K.S. Feng, J.T. Lin, Clean air for some: Unintended spillover effects of regional air pollution policies. Sci. Adv. 5, eaav4707 (2019)

    CAS  Article  Google Scholar 

  4. 4.

    Q. Di, I. Kloog, P. Koutrakis, A. Lyapustin, Y.J. Wang, J. Schwartz. Assessing PM2.5 exposures with high spatiotemporal resolution across the continental United States. Environ. Sci. Technol. 50, 4712–4721 (2016)

    CAS  Article  Google Scholar 

  5. 5.

    S. Heft-Neal, J. Burney, E. Bendavid, M. Burke, Robust relationship between air quality and infant mortality in Africa. Nature 559, 254–258 (2018)

    CAS  Article  Google Scholar 

  6. 6.

    C.A. Pope, D.W. Dockery, Health effects of fine particulate air pollution: line that connect. J. Air Waste Manag. Assoc. 56, 709–742 (2006)

    CAS  Article  Google Scholar 

  7. 7.

    J. Banhart, Manufacture, characterisation and application of cellular metals and metal foams. Prog. Mater. Sci. 46, 559–632 (2001)

    CAS  Article  Google Scholar 

  8. 8.

    X.L. Luo, L. Kan, X. Li, L.B. Sun, G.H. Li, J. Zhao, D.S. Li, Q.S. Huo, Y.L. Liu, Two functional porous metal-organic frameworks constructed from expanded tetracarboxylates for gas adsorption and organosulfurs removal. Cryst. Growth Des. 16, 7301–7307 (2016)

    CAS  Article  Google Scholar 

  9. 9.

    S. Kitaoka, Y. Matsushima, C. Chen, H. Awaji, Thermal cyclic fatigue behavior of porous ceramics for gas cleaning. J. Am. Ceram. Soc. 87, 906–913 (2004)

    CAS  Article  Google Scholar 

  10. 10.

    C. Voigt, T. Zienert, P. Schubert, C.G. Aneziris, J. Hubalkova, P. Colombo. Reticulated porous foam ceramics with different surface chemistries. J. Am. Ceram. Soc. 97, 2046–2053 (2014)

    CAS  Article  Google Scholar 

  11. 11.

    Y.C. Su, Z.J. Zhang, Z.G. Wang, M.L. Chen, M.D. Dong, X. Han, Necklace-like fiber composite membrane for high-efficiency particulate matter capture. Appl. Surf. Sci. 425, 220–226 (2017)

    CAS  Article  Google Scholar 

  12. 12.

    G.H. Zhang, Q.H. Zhu, L. Zhang, F. Yong, Z. Zhang, S.L. Wang, Y. Wang, L. He, G.H. Tao, High-performance particulate matter including nanoscale particle removal by a self-powered air filter. Nat. Commun. 11, 1653 (2020)

    CAS  Article  Google Scholar 

  13. 13.

    L. Zhang, T. Hirai, A. Kumakawa, R.Z. Yuan, Cyclic thermal shock resistance of TiC/Ni3Al FGMs. Composites Part B 28, 21–27 (1997)

    Article  Google Scholar 

  14. 14.

    L. Zhuang, Q.G. Fu, Bonding strength, thermal shock and oxidation resistance of interlocking (Zr, Hf)C-SiC/SiC double-layer coating for C/C composites. Surf. Coat. Tech. 315, 436–442 (2017)

    CAS  Article  Google Scholar 

  15. 15.

    G. Chen, Y. Peng, G. Zheng, Z. Qi, M. Wang, H. Yu, C. Dong, C.T. Liu, Polysynthetic twinned TiAl single crystals for high-temperature applications. Nat. Mater. 15, 876–881 (2016)

    CAS  Article  Google Scholar 

  16. 16.

    T. Klein, L. Usategui, B. Rashkova, M.L. Nó, J.S. Juan, H. Clemens, S. Mayer. Mechanical behavior and related microstructural aspects of a nano-lamellar TiAl alloy at elevated temperatures. Acta Mater. 128, 440–450 (2017)

    CAS  Article  Google Scholar 

  17. 17.

    M. Naveed, A.F. Renteria, S. Weiß, Role of alloying elements during thermocyclic oxidation of β/γ-TiAl alloys at high temperatures. J. Alloy Compd. 691, 489–497 (2017)

    CAS  Article  Google Scholar 

  18. 18.

    W.Y. Gui, Y.F. Liang, G.J. Hao, J.P. Lin, D.Y. Sun, M.D. Liu, C. Liu, Zhang. High Nb-TiAl-based porous composite with hierarchical micro-pore structure for high temperature applications. J. Alloy Compd. 744, 463–469 (2018)

    CAS  Article  Google Scholar 

  19. 19.

    W.Y. Gui, J.P. Lin, M.D. Liu, Y.H. Qu, Y.C. Wang, Y.F. Liang, Effects of nano-NiO addition on the microstructure and corrosion properties of high Nb-TiAl alloy. J. Alloy Compd. 782, 973–980 (2019)

    CAS  Article  Google Scholar 

  20. 20.

    D. Kim, D. Seo, X. Huang, T. Sawatzky, H. Saari, J. Hong, Y.-W. Kim, Oxidation behaviour of gamma titanium aluminides with or without protective coatings. Int. Mater. Rev. 59, 297–325 (2014)

    CAS  Google Scholar 

  21. 21.

    Z. Wu, A. Mahmud, J. Zhang, Y. Liu, H. Yang, Surface oxidation of NiTi during thermal exposure in flowing argon environment. Mater. Des. 144, 123–133 (2018)

    Article  Google Scholar 

  22. 22.

    H.Y. Gao, Y.H. He, J. Zou, N.P. Xu, C.T. Liu, Pore structure control for porous FeAl intermetallics. Intermetallics 32, 423–428 (2013)

    CAS  Article  Google Scholar 

  23. 23.

    Y. Jiang, Y.H. He, C.T. Liu, Review of porous intermetallic compounds by reactive synthesis of elemental powders. Intermetallics 93, 217–226 (2018)

    CAS  Article  Google Scholar 

  24. 24.

    M.C. Luo, Y.J. Sun, L. Wang, S.J. Guo, Tuning multimetallic ordered intermetallic nanocrystals for efficient energy electrocatalysis. Adv. Energy Mater. 7, 1602073 (2016)

    Article  Google Scholar 

  25. 25.

    X.P. Cai, Y.N. Liu, P.Z. Feng, X.Y. Jiao, L.Q. Zhang, J.Z. Wang, Fe-Al intermetallic foam with porosity above 60 % prepared by thermal explosion. J. Alloy Compd. 732, 443–447 (2017)

    Article  Google Scholar 

  26. 26.

    X.P. Fan, Preparation and performance of hydroxyapatite/Ti porous biocomposite scaffolds. Ceram. Int. 45, 16466–16469 (2019)

    CAS  Article  Google Scholar 

  27. 27.

    K. Mohanta, A. Kumar, O. Parkash, D. Kumar, Low cost porous alumina with tailored microstructure and thermal conductivity prepared using rice husk and sucrose. J. Am. Ceram. Soc. 97, 1708–1719 (2014)

    CAS  Article  Google Scholar 

  28. 28.

    Y.H. He, Y. Jiang, N.P. Xu, J. Zou, B.Y. Huang, C.T. Liu, P.K. Liaw. Fabrication of Ti-Al micro/nanometer-sized porous alloys through the Kirkendall effect. Adv. Mater. 19, 2102–2106 (2007)

    CAS  Article  Google Scholar 

  29. 29.

    W.Y. Gui, J.P. Lin, J.R. Liang, Y.H. Qu, Y.C. Guo, K. Lv, H. Zhang. Micro/nano dual-scale porous composite membranes for the separation of nano-pollutants from water. ACS Appl. Nano Mater. 2, 806–811 (2019)

    CAS  Article  Google Scholar 

  30. 30.

    K. Karczewski, W.J. Stępniowski, M. Chojnacki, S. Jóźwiak, Crystalline oxalic acid aided FeAl intermetallic alloy sintering. Fabrication of intermetallic foam with porosity above 45 %. Mater. Lett. 164, 32–34 (2016)

    CAS  Article  Google Scholar 

  31. 31.

    H.Y. Gao, Y.H. He, P.Z. Shen, J. Zou, N.P. Xu, Y. Jiang, B.Y. Huang, C.T. Liu, Porous FeAl intermetallics fabricated by elemental powder reactive synthesis. Intermetallics 17, 1041–1046 (2009)

    CAS  Google Scholar 

  32. 32.

    G. Chen, P. Cao, Y.H. He, P.Z. Shen, H.Y. Gao, Effect of aluminium evaporation loss on pore characteristics of porous FeAl alloys produced by vacuum sintering. J. Mater. Sci. 47, 1244–1250 (2012)

    CAS  Article  Google Scholar 

  33. 33.

    Y. Ruan, N. Yan, H.Z. Zhu, K. Zhou, B. Wei, Thermal performance determination of binary Fe-Al alloys at elevated temperatures. J. Alloy Compd. 701, 676–681 (2017)

    CAS  Article  Google Scholar 

  34. 34.

    P.Z. Shen, Y.H. He, H.Y. Gao, J. Zou, N.P. Xu, Y. Jiang, B.Y. Huang, C.T. Liu, Development of a new graded-porosity FeAl alloy by elemental reactive synthesis. Desalination 249, 29–33 (2009)

    CAS  Article  Google Scholar 

  35. 35.

    A. Biswas, Porous NiTi by thermal explosion mode of SHS: processing, mechanism and generation of single phase microstructure. Acta Mater. 53, 1415–1425 (2005)

    CAS  Article  Google Scholar 

  36. 36.

    E.A. Levashov, A.S. Mukasyan, A.S. Rogachev, D.V. Shtansky, Self-propagating high-temperature synthesis of advanced materials and coatings. Int. Mater. Rev. 62, 1–37 (2016)

    Google Scholar 

  37. 37.

    J.J. Liu, B. Ren, Y.G. Chen, Y.J. Lu, S.H. Zhang, Y.D. Rong, J.L. Yang, Novel design of alumina foams with three-dimensional reticular architecture for effective high-temperature particulate matter capture. J. Am. Ceram. Soc. 00, 1–11 (2019)

    Google Scholar 

  38. 38.

    J.E. Meloni, M. Caldera, V. Palma, V. Pignatelli, V. Gerardi, Soot abatement from biomass boilers by means of open-cell foams filters. Renew. Energy 131, 745 (2019)

    CAS  Article  Google Scholar 

  39. 39.

    C. Liu, P.C. Hsu, H.W. Lee, M. Ye, G.Y. Zheng, N. Liu, W.Y. Li, Y. Cui, Transparent air filter for high-efficiency PM2.5 capture. Nat Commun. 6, 6205 (2015)

    CAS  Article  Google Scholar 

Download references

Acknowledgements

The authors are grateful for the financial support from the Fundamental Research Funds for the Central Universities (NO. FRF-TP-19-080A1); China Postdoctoral Science Foundation (No. 2019M660452); National Natural Science Foundation of China (No. 51671016; No. 51831001) and Creative Research Groups of China (No. 51921001).

Author information

Affiliations

Authors

Contributions

The idea was proposed by WG, YL and JL. The experiments were carried out by WG. The experimental results were analyzed and interpreted by WG, YL, and DD. WG wrote the main manuscript text and prepared Figs. 1–4. The manuscript was reviewed and further analyzed by WG and JL.

Corresponding author

Correspondence to Junpin Lin.

Ethics declarations

Conflict of interest

The authors declare no competing interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Gui, W., Liang, Y., Dong, D. et al. FeAl/Al2O3 porous composite microfiltration membrane for highly efficiency high‐temperature particulate matter capturing. J Porous Mater (2021). https://doi.org/10.1007/s10934-021-01048-6

Download citation

Keywords

  • FeAl/Al2O3 porous composite
  • Microfiltration membrane
  • Filtration and separation
  • Intermetallic
  • High temperature flue gas