Structure and catalytic activity of highly ordered AlMCM-48 materials with different Si/Al ratios on the degradation of high-density polyethylene

Abstract

Catalysts of AlMCM-48 with different Si/Al molar rations were synthesized by modified hydrothermal method with respect to previous works. As a consequence, the materials showed different porous structures making them of high adsorption capacities and high efficiency to high-density polyethylene (HDPE). Samples synthesized with various Si/Al molar ratios were characterized by X-ray diffraction (XRD), nitrogen adsorption at – 196 °C, scanning electron microscope (SEM), transmission electron microscope (TEM), Fourier transform infrared (FTIR) and dispersive energy X-ray spectrometry (EDX). Characterization results suggested the presence of tetrahedral Al species on AlMCM-48(x), giving highly ordered materials that exhibit thermal stability. It is important to highlight that the use pseudoboehmite as a promising Al source for the synthesis of this type of molecular sieves, leading to materials with slight morphological differences due to the formation of interconnected particles spherical. The catalytic performance showed that the high-density polyethylene (HDPE) degradation reaction occurs in complex reaction steps in the heating rates 5, 10 and 20 °C min−1. The pore diameters of the catalysts influence the degradation process under non-isothermal condition. Furthermore, on the conditions studied, the AlMCM-48(x) catalysts exhibited high conversion values and play important roles in the decrease of HDPE degradation temperature, potentially leading to an efficient process in terms of energy expenditure.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

References

  1. 1.

    W.J. Roth, J.C. Vartuli, Stud. Surf. Sci. Catal. (2005). https://doi.org/10.1016/s0167-2991(05)80007-2

    Article  Google Scholar 

  2. 2.

    L.B. McCusker, D.H. Olson, C. Baerlocher, Atlas of Zeolite Framework Types, 6th edn. (Elsevier, Amsterdam, 2007). https://doi.org/10.1016/B978-0-444-53064-6.X5186-X

    Google Scholar 

  3. 3.

    E.W.S.J.C. Vartuli, K.D. Schmitt, C.T. Kresge, W.J. Roth, M.E. Leonowicz, S.B. McCullen, S.D. Hellring, J.S. Beck, J.L. Schlenker, D.H. Olson, Chem. Mater. (1994). https://doi.org/10.1021/cm00048a018

    Article  Google Scholar 

  4. 4.

    T.J.V. Yates, J.M. Thomas, J.J. Fernandez, O. Terasaki, R. Ryoo, P.A. Midgley, Chem. Phys. Lett. (2006). https://doi.org/10.1016/j.cplett.2005.11.031

    Article  Google Scholar 

  5. 5.

    S.N. Kim, W.J. Son, J.S. Choi, W.S. Ahn, Microporous Mesoporous Mater. (2008). https://doi.org/10.1016/j.micromeso.2008.02.025

    Article  Google Scholar 

  6. 6.

    F. Chen, L. Huang, X. Yang, Z. Wang, Mater. Lett. (2013). https://doi.org/10.1016/j.matlet.2013.07.079

    Article  Google Scholar 

  7. 7.

    L.J. Yin, D.Z. Chen, H. Wang, X.B. Ma, G.M. Zhou, Chem. Eng. J. (2014). https://doi.org/10.1016/j.cej.2013.09.114

    Article  Google Scholar 

  8. 8.

    T.G. Santos, A.O.S. Silva, S.M.P. Meneghetti, Appl. Clay Sci. (2019). https://doi.org/10.1016/j.clay.2019.105293

    Article  Google Scholar 

  9. 9.

    Y. Xia, R. Mokaya, Microporous Mesoporous Mater. (2004). https://doi.org/10.1016/j.micromeso.2003.09.029

    Article  Google Scholar 

  10. 10.

    L. Huang, Q. Huang, H. Xiao, M. Eic, Microporous Mesoporous Mater. (2008). https://doi.org/10.1016/j.micromeso.2007.08.011

    Article  Google Scholar 

  11. 11.

    K. Schumacher, M. Grün, K.K. Unger, Microporous Mesoporous Mater. (1999). https://doi.org/10.1016/S1387-1811(98)00254-6

    Article  Google Scholar 

  12. 12.

    Y.H. Lin, M.H. Yang, J. Mol. Catal. A Chem. (2005). https://doi.org/10.1016/j.molcata.2005.01.003

    Article  Google Scholar 

  13. 13.

    M.S. Abbas-Abadi, M.N. Haghighi, H. Yeganeh, A.G. McDonald, J. Anal. Appl. Pyrolysis (2014). https://doi.org/10.1016/j.jaap.2014.05.023

    Article  Google Scholar 

  14. 14.

    A. Duan, C. Wang, Z. Zhao, Z. Tong, T. Li, H. Wu, H. Fan, G. Jiang, J. Liu, J. Porous Mater. (2013). https://doi.org/10.1007/s10934-013-9703-5

    Article  Google Scholar 

  15. 15.

    H.I. Meléndez-Ortiz, Y.A. Perera-Mercado, L.A. García-Cerda, J.A. Mercado-Silva, G. Castruita, Ceram. Int. (2014). https://doi.org/10.1016/j.ceramint.2013.08.072

    Article  Google Scholar 

  16. 16.

    H.S. Kibombo, V. Balasanthiran, C.M. Wu, R. Peng, R.T. Koodali, Microporous Mesoporous Mater. (2014). https://doi.org/10.1016/j.micromeso.2014.07.012

    Article  Google Scholar 

  17. 17.

    Z. Fei, S. Ai, Z. Zhou, X. Chen, J. Tang, M. Cui, X. Qiao, J. Ind. Eng. Chem. (2014). https://doi.org/10.1016/j.jiec.2014.01.013

    Article  Google Scholar 

  18. 18.

    A.O.S. Silva, M.J.B. Souza, A.M.G. Pedrosa, A.C.F. Coriolano, V.J. Fernandes, A.S. Araujo, Microporous Mesoporous Mater. (2017). https://doi.org/10.1016/j.micromeso.2017.02.049

    Article  Google Scholar 

  19. 19.

    A. Coelho, L. Costa, M.M. Marques, I.M. Fonseca, M.A.N.D.A. Lemos, F. Lemos, Appl. Catal. A Gen. (2012). https://doi.org/10.1016/j.apcata.2011.11.010

    Article  Google Scholar 

  20. 20.

    M.J.B. de Souza, T.H.A. Silva, T.R.S. Ribeiro, A.O.S. da Silva, A.M.G. Pedrosa, J. Therm. Anal. Calorim. (2020). https://doi.org/10.1007/s10973-019-08803-7

    Article  Google Scholar 

  21. 21.

    P.A. Russo, M.M.L. Ribeiro Carrott, P.J.M. Carrott, J.M. Lopes, F. Ramôa Ribeiro, J. Rocha, Microporous Mesoporous Mater. (2008). https://doi.org/10.1016/j.micromeso.2008.01.015

    Article  Google Scholar 

  22. 22.

    M.M.L. Ribeiro Carrott, F.L. Conceição, J.M. Lopes, P.J.M. Carrott, C. Bernardes, J. Rocha, F. Ramôa Ribeiro, Microporous Mesoporous Mater. (2006). https://doi.org/10.1016/j.micromeso.2006.01.010

    Article  Google Scholar 

  23. 23.

    G. Øye, J. Sjöblom, M. Stöcker, Microporous Mesoporous Mater. (1999). https://doi.org/10.1016/S1387-1811(98)00251-0

    Article  Google Scholar 

  24. 24.

    S.E. Dapurkar, P. Selvam, Appl. Catal. A Gen. (2003). https://doi.org/10.1016/S0926-860X(03)00486-1

    Article  Google Scholar 

  25. 25.

    M. Hartmann, C. Bischof, Stud. Surf. Sci. Catal. (1998). https://doi.org/10.1016/s0167-2991(98)80999-3

    Article  Google Scholar 

  26. 26.

    G.A. Eimer, L.B. Pierella, G.A. Monti, O.A. Anunziata, Catal. Lett. (2002). https://doi.org/10.1023/A:1014924332500

    Article  Google Scholar 

  27. 27.

    J.C. Chang, A.N. Ko, Catal. Today (2004). https://doi.org/10.1016/j.cattod.2004.07.010

    Article  Google Scholar 

  28. 28.

    T. Krithiga, A. Vinu, K. Ariga, B. Arabindoo, M. Palanichamy, V. Murugesan, J. Mol. Catal. A Chem. (2005). https://doi.org/10.1016/j.molcata.2005.05.008

    Article  Google Scholar 

  29. 29.

    K. Venkatachalam, P. Visuvamithiran, B. Sundaravel, M. Palanichamy, V. Murugesan, J. Catal. (2012). https://doi.org/10.1016/S1872-2067(11)60339-2

    Article  Google Scholar 

  30. 30.

    K. Wang, Y. Lin, M.A. Morris, J.D. Holmes, J. Mater. Chem. (2006). https://doi.org/10.1039/b607599a

    Article  Google Scholar 

  31. 31.

    A.M. Elfadly, I.F. Zeid, F.Z. Yehia, A.M. Rabie, M.M. Aboualala, S.E. Park, Int. J. Biol. Macromol. (2016). https://doi.org/10.1016/j.ijbiomac.2016.05.053

    Article  PubMed  Google Scholar 

  32. 32.

    J.K. Jeon, H.J. Park, J.H. Yim, J.M. Kim, J. Jung, Y.K. Park, Solid State Phenom. (2007). https://doi.org/10.4028/3-908451-31-0.1757

    Article  Google Scholar 

  33. 33.

    H. Ju Park, J.H. Yim, J.K. Jeon, J. Man Kim, K.S. Yoo, Y.K. Park, J. Phys. Chem. Solids. (2008). https://doi.org/10.1016/j.jpcs.2007.10.083

    Article  Google Scholar 

  34. 34.

    Y.K. Park, H.W. Lee, J.Y. Lee, Y.M. Kim, J. Anal. Appl. Pyrolysis (2018). https://doi.org/10.1016/j.jaap.2018.08.008

    Article  Google Scholar 

  35. 35.

    T.G. dos Santos, A.M.G.P. Souza, A.S. Araujo, A.O.S. Silva, M.J.B. Souza, Eficiência de catalisadores mesoporosos tipo AlMCM-48 com diferentes razões Si/Al para o processo de pirólise de polímeros tipo PEAD e PP. (XXV Congresso Iberoamericano de Catálise, 2016), https://www.researchgate.net/publication/342082409_Eficiencia_de_catalisadores_mesoporosos_tipo_AlMCM-48_com_diferentes_razoes_SiAl_para_o_processo_de_pirolise_de_polimeros_tipo_PEAD_e_PP Accessed 12 Jan 2021

  36. 36.

    A. Monnier, F. Schuth, Q. Huo, D. Kumar, D. Margolese, G.D. Stucky, M. Krishnamurty, A. Firouzi, M. Janicke, B.F. Chmelka, Science (1993). https://doi.org/10.1126/science.261.5126.1299

    Article  PubMed  Google Scholar 

  37. 37.

    T.W. Kim, P.W. Chung, V.S.Y. Lin, Chem. Mater. (2010). https://doi.org/10.1021/cm1017344

    Article  Google Scholar 

  38. 38.

    M.A.S. da Spinacé, M.A. De Paoli, Quim. Nova (2005). https://doi.org/10.1590/s0100-40422005000100014

    Article  Google Scholar 

  39. 39.

    J.S. Beck, J.C. Vartuli, W.J. Roth, M.E. Leonowicz, C.T. Kresge, K.D. Schmitt, C.T.W. Chu, D.H. Olson, E.W. Sheppard, S.B. McCullen, J.B. Higgins, J.L. Schlenker, J. Am. Chem. Soc. (1992). https://doi.org/10.1021/ja00053a020

    Article  Google Scholar 

  40. 40.

    L. Huang, Q. Huang, H. Xiao, M. Eic, Microporous Mesoporous Mater. (2008). https://doi.org/10.1016/j.micromeso.2007.12.026

    Article  Google Scholar 

  41. 41.

    Y. Bi, J. Blanchard, J.F. Lambert, Y. Millot, S. Casale, S. Zeng, H. Nie, D. Li, Appl. Clay Sci. (2012). https://doi.org/10.1016/j.clay.2012.01.005

    Article  Google Scholar 

  42. 42.

    M. Thommes, K. Kaneko, A.V. Neimark, J.P. Olivier, F. Rodriguez-Reinoso, J. Rouquerol, K.S.W. Sing, Pure Appl. Chem. (2015). https://doi.org/10.1515/pac-2014-1117

    Article  Google Scholar 

  43. 43.

    H.Y. Wu, X.L. Zhang, X. Chen, Y. Chen, X.C. Zheng, J. Solid State Chem. (2014). https://doi.org/10.1016/j.jssc.2013.12.004

    Article  Google Scholar 

  44. 44.

    A.S. Araujo, M. Jaroniec, Thermochim. Acta. (2000). https://doi.org/10.1016/S0040-6031(00)00637-7

    Article  Google Scholar 

  45. 45.

    B. Kalita, P. Phukan, A.K. Talukdar, Catal. Sci. Technol. (2012). https://doi.org/10.1039/c2cy20198d

    Article  Google Scholar 

  46. 46.

    B. Zhang, Z. Zhong, K. Ding, Z. Song, Fuel (2015). https://doi.org/10.1016/j.fuel.2014.09.052

    Article  PubMed  Google Scholar 

  47. 47.

    I. Ahmad, M. Ismail Khan, M. Ishaq, H. Khan, K. Gul, W. Ahmad, Polym. Degrad. Stab. (2013). https://doi.org/10.1016/j.polymdegradstab.2013.09.009

    Article  Google Scholar 

  48. 48.

    Y.S. González, C. Costa, M.C. Márquez, P. Ramos, J. Hazard. Mater. (2011). https://doi.org/10.1016/j.jhazmat.2010.12.121

    Article  PubMed  PubMed Central  Google Scholar 

  49. 49.

    F. Obeid, J. Zeaiter, A.H. Al-Muhtaseb, K. Bouhadir, Energy Convers. Manag. (2014). https://doi.org/10.1016/j.enconman.2014.05.075

    Article  Google Scholar 

  50. 50.

    E.M.A. Edreis, H. Yao, J. Mater. Res. Technol. (2016). https://doi.org/10.1016/j.jmrt.2016.03.006

    Article  Google Scholar 

  51. 51.

    H. Zhou, Y.Q. Long, A.H. Meng, Q.H. Li, Y.G. Zhang, Waste Manage. (2015). https://doi.org/10.1016/j.wasman.2014.09.027

    Article  Google Scholar 

  52. 52.

    V.P.S. Caldeira, A.G.D. Santos, D.S. Oliveira, R.B. Lima, L.D. Souza, S.B.C. Pergher, J. Therm. Anal. Calorim. (2017). https://doi.org/10.1007/s10973-017-6551-6

    Article  Google Scholar 

  53. 53.

    W. Kaminsky, I.J.N. Zorriqueta, J. Anal. Appl. Pyrolysis (2007). https://doi.org/10.1016/j.jaap.2006.11.005

    Article  Google Scholar 

  54. 54.

    S. Kumar, A.K. Panda, R.K. Singh, Resour. Conserv. Recycl. (2011). https://doi.org/10.1016/j.resconrec.2011.05.005

    Article  Google Scholar 

  55. 55.

    F. Bai, W. Guo, X. Lü, Y. Liu, M. Guo, Q. Li, Y. Sun, Fuel (2015). https://doi.org/10.1016/j.fuel.2014.12.073

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Council for Scientific and Technological Development (CNPq) and the Coordination for the Improvement of Higher Education Personnel—Brazil (CAPES)—Finance code 001. T.G. dos Santos expresses his appreciation for a fellowship granted by CNPq. For their contributions, the authors thank the GCAR/IQB/UFAL, LabCat/UFS, LSCAT/CTEC/UFAL and IFAL.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Tiago G. dos Santos.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary Information 1 (DOCX 6866 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

dos Santos, T.G., Silva, A.O.S., Pedrosa, A.M.G. et al. Structure and catalytic activity of highly ordered AlMCM-48 materials with different Si/Al ratios on the degradation of high-density polyethylene. J Porous Mater (2021). https://doi.org/10.1007/s10934-021-01044-w

Download citation

Keywords

  • AlMCM-48
  • Pseudoboehmite
  • Modified hydrothermal synthesis
  • High-density polyethylene
  • Catalytic degradation