Enhanced release rate of the poorly water-soluble ginsenoside Rg3 with ordered meso/macroporous silica


Although ginsenoside Rg3 is very important in pharmaceutical field, the application of this drug is greatly limited by the release rate due to its poor dissolution. Here we introduced a meso/macroporous SiO2 to assist dispersing Rg3. The as-obtained SiO2/Rg3 (m/M-SiO2/Rg3) with this well-designed support showed superior Rg3 release rate compared to a mesoporous SiO2/Rg3 (m-SiO2/Rg3) at the same release duration and Rg3 loading 20 wt%. The excellent performance of the carrier drug could be attributed to the structural characteristics of hierarchically porous SiO2. On one hand, the macropores (~ 270 nm) accommodate for the active ingredient as effective reservoirs, more importantly the interconnected macropores efficiently shortens the paths of transferring Rg3, which facilitates releasing Rg3 at the nearest mesoporous channels (~ 2.8 nm) penetrated on the wall of adjacent macropores.

This is a preview of subscription content, access via your institution.

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Fig. 1
Fig. 2
Fig. 3
Fig. 4


  1. 1.

    A.S. Wong, C.M. Che, K.W. Leung, Recent advances in ginseng as cancer therapeutics: a functional and mechanistic overview. Nat. Product Rep. 32(2), 256–272 (2015)

    CAS  Article  Google Scholar 

  2. 2.

    X. Zheng, W. Chen, H. Hou et al., Ginsenoside 20(S)-Rg3 induced autophagy to inhibit migration and invasion of ovarian cancer. Biomed. Pharmacother. 85, 620–626 (2017)

    CAS  Article  Google Scholar 

  3. 3.

    T. Wang, R. Guo, G. Zhou, et al., Traditional uses, botany, phytochemistry, pharmacology and toxicology of Panax notoginseng (Burk.) F.H. Chen: a review. J. Ethnopharmacol. 188, 234–258 (2016).

  4. 4.

    Y. Jing, S. Li, L. Wang et al., Ginsenoside Rg3 attenuates lipopolysaccharide-induced acute lung injury via MerTK-dependent activation of the PI3K/AKT/mTOR pathway. Front. Pharmacol. 9, 850 (2018)

    Article  Google Scholar 

  5. 5.

    S. Kang, S.J. Park, A.Y. Lee et al., Ginsenoside Rg3 promotes inflammation resolution through M2 macrophage polarization. J. Ginseng Res. 42(1), 68–74 (2018)

    Article  Google Scholar 

  6. 6.

    A. Kang, T. Xie, D. Zhu et al., Suppressive effect of ginsenoside Rg3 against lipopolysaccharide-induced depression-like behavior and neuroinflammation in mice. J. Agric. Food Chem. 65(32), 6861–6869 (2017)

    CAS  Article  Google Scholar 

  7. 7.

    M.H. Lahiani, S. Eassa, C. Parnell et al., Carbon nanotubes as carriers of Panax ginseng metabolites and enhancers of ginsenosides Rb1 and Rg1 anti-cancer activity. Nanotechnology 28(1), 015101 (2017)

    Article  Google Scholar 

  8. 8.

    C. Tang, Y. Wang, Y. Long et al., Anchoring 20(R)-ginsenoside Rg3 onto cellulose nanocrystals to increase the hydroxyl radical scavenging activity. ACS Sustain. Chem. Eng. 5(9), 7507–7513 (2017)

    CAS  Article  Google Scholar 

  9. 9.

    Q. Zhang, X. Kang, B. Yang et al., Antiangiogenic effect of capecitabine combined with ginsenoside Rg3 on breast cancer in mice. Cancer Biother. Radiopharm. 23(5), 647–653 (2008)

    CAS  Article  Google Scholar 

  10. 10.

    M. Han, L. Ma, X. Yu et al., A nanoparticulate drug-delivery system for 20(S)-protopanaxadiol: formulation, characterization, increased oral bioavailability and anti-tumor efficacy. Drug Deliv. 23(7), 1–9 (2015)

    Article  Google Scholar 

  11. 11.

    W. Pudło, P. Przemysław et al., Hierarchical silica monolithic tablets as novel carriers for drug delivery. Eur. J. Pharm. Biopharm. 141, 12–20 (2019)

    Article  Google Scholar 

  12. 12.

    H. Cheng, X. Fan, X. Wang et al., Hierarchically self-assembled supramolecular host-guest delivery system for drug resistant cancer therapy. Biomacromolecules 19(6), 1926–1938 (2018)

    CAS  Article  Google Scholar 

  13. 13.

    Q. Jin, F. Qu, J. Jiang et al., A pH-sensitive controlled dual-drug release from meso-macroporous silica/multilayer-polyelectrolytes coated SBA-15 composites. J. Sol-Gel Sci. Technol. 66(3), 466–471 (2013)

    CAS  Article  Google Scholar 

  14. 14.

    Y. Zhang, H. Wang, C. Li et al., A Novel three-dimensional large-pore mesoporous carbon matrix as a potential nanovehicle for the fast release of the poorly water-soluble drug. Celecoxib. Pharm. Res. 31(4), 1059–1070 (2014)

    Article  Google Scholar 

  15. 15.

    M. Prokopowicz, J. Żeglinski et al., Surface-activated fibre-like SBA-15 as drug carriers for bone diseases. Aaps Pharm. 20(1), 1–13 (2018)

    Article  Google Scholar 

  16. 16.

    A. Maleki, M. Hamidi, Dissolution enhancement of a model poorly water-soluble drug, atorvastatin, with ordered mesoporous silica: comparison of MSF with SBA-15 as drug carriers. Expert Opin. Drug Deliv. 13(2), 171–181 (2016)

    CAS  Article  Google Scholar 

  17. 17.

    T. Heikkil, J. Salonen, J. Tuura et al., Mesoporous silica material TUD-1 as a drug delivery system. Int. J. Pharm. 331(1), 133–138 (2007)

    Article  Google Scholar 

  18. 18.

    Y. Hu, Z. Zhi, Q. Zhao et al., 3D cubic mesoporous silica microsphere as a carrier for poorly soluble drug carvedilol. Microporous Mesoporous Mater. 147(1), 94–101 (2012)

    Article  Google Scholar 

  19. 19.

    B.T. Holland, C.F. Blanford, T. Do et al., Synthesis of highly ordered, three-dimensional, macroporous structures of amorphous or crystalline inorganic oxides, phosphates, and hybrid composites. Chem. Mater. 11(3), 795–805 (1999)

    CAS  Article  Google Scholar 

  20. 20.

    D. Zhao, Q. Huo, J. Feng et al., Nonionic triblock and star diblock copolymer and oligomeric surfactant syntheses of highly ordered, hydrothermally stable, mesoporous silica structures. J. Am. Chem. Soc. 120(24), 6024–6036 (1998)

    CAS  Article  Google Scholar 

  21. 21.

    M.V. Speybroeck, V.R. Barillaro, T.D. Thi et al., Ordered mesoporous silica material SBA-15: A broad-spectrum formulation platform for poorly soluble drugs. J. Pharm. Sci. 98(8), 2648–2658 (2010)

    Article  Google Scholar 

  22. 22.

    J.-P. Dacquin, A.F. Lee, K. Wilson et al., Hierarchical macroporous–mesoporous SBA-15 sulfonic acid catalysts for biodiesel synthesis. Green Chem. 12(2), 296–303 (2010)

    Article  Google Scholar 

  23. 23.

    P. Zhao, L. Wang, C. Sun et al., Uniform mesoporous carbon as a carrier for poorly water soluble drug and its cytotoxicity study. Eur. J. Pharm. Biopharm. 80(3), 535–543 (2012)

    CAS  Article  Google Scholar 

  24. 24.

    C. Govindasamy, W.J. Son et al., Synthesis of mesoporous materials SBA-15 and CMK-3 from fly ash and their application for CO2 adsorption. J. Porous Mater. 16(5), 545–551 (2009)

    Article  Google Scholar 

  25. 25.

    B. Liu, R.T. Baker, Factors affecting the preparation of ordered mesoporous ZrO2 using the replica method. J. Mater. Chem. 18(43), 5200–5207 (2008)

    CAS  Article  Google Scholar 

  26. 26.

    B.C. Hancock, M. Parks, What is the true solubility advantage for amorphous pharmaceuticals? Pharm. Res. 17(4), 397–404 (2000)

    CAS  Article  Google Scholar 

  27. 27.

    D.R. Rolison, Catalytic nanoarchitectures-the importance of nothing and the unimportance of periodicity. Science 299(5613), 1698–1701 (2003)

    CAS  Article  Google Scholar 

Download references


Y. Liu acknowledges the support from National key research and development funding (2018YFC1707000).

Author information



Corresponding authors

Correspondence to Shuiqing Li or Yanju Liu.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Below is the link to the electronic supplementary material.

Electronic supplementary material 1 (DOCX 359 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Wu, M., Xu, J., Lin, X. et al. Enhanced release rate of the poorly water-soluble ginsenoside Rg3 with ordered meso/macroporous silica. J Porous Mater (2021). https://doi.org/10.1007/s10934-020-01025-5

Download citation


  • Ordered meso
  • Macroporous drug
  • Hierarchical structure
  • Dissolution rate
  • Ginsenoside Rg3
  • Silica-ginsenoside