Comparison of spherical and rod-like morphologies of SBA-15 for enzyme immobilization

Abstract

Mesoporous silica, namely SBA-15, has been used for enzyme immobilization to help improve thermal stability of the enzymes and, in some cases, increase the enzymatic activity. It has been shown that morphology of SBA-15 is one of the factors influencing kinetics of enzyme adsorption. We reported, here, the adsorption kinetics and peroxidase activity of cytochrome c (cytc) in spherical SBA-15 in comparison of three different rod-like (fibrous, fiber, and rope) SBA-15 samples. The experimental adsorption profile fitted much better to the pseudo-second order than the pseudo-first order model. The maximum loading capacity of cytc was 466, 423, 390, and 352 mg/g for fibrous, rope, fiber, and spherical SBA-15, respectively. The rate constant for cytc adsorption for spherical SBA-15 was 3 times slower than rope and fiber SBA-15, and 15 times slower than fibrous SBA-15. The activity of cytc after immobilization in SBA-15 samples depended on the amount of cytc loading. The cytc loading in all SBA-15 at lower than 10 µmol/g showed higher activity than in free cytc in solution. The maximum activity of immobilized cytc was found in spherical SBA-15 at cytc loading of 1.00 µmol/g (~ 7 times higher than in free cytc). Finally, the Fe(III) at the heme group of cytc/SBA-15 samples with high activity was examined to contain high-spin state. The investigation in this work could suggest useful information for the preparation of SBA-15 for enzyme immobilization to appropriate applications, such as drug delivery.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

References

  1. 1.

    S. Hudson, J. Cooney, E. Magner, Angew. Chem. Int. Ed. 47, 8582–8594 (2008)

    CAS  Article  Google Scholar 

  2. 2.

    J.M. Bolivar, I. Eisl, B. Nidetzky, Catal. Today 259, 66–80 (2015)

    Article  Google Scholar 

  3. 3.

    C.-C. Chen, J.-S. Do, Y. Gu, Sensors 9, 4635–4648 (2009)

    CAS  Article  Google Scholar 

  4. 4.

    Z. Wu, D. Zhao, ChemComm 47, 3332–3338 (2011)

    CAS  Google Scholar 

  5. 5.

    M. Moritz, M. Geszke-Moritz, Mater. Sci. Eng. C 49, 114–151 (2015)

    CAS  Article  Google Scholar 

  6. 6.

    J.F. Diaz, K.J. Balkus, J. Mol. Catal. B Enzym. 2, 115–126 (1996)

    CAS  Article  Google Scholar 

  7. 7.

    S. Hudson, E. Magner, J. Cooney, B.K. Hodnett, J. Phys. Chem. B 109, 19496–19506 (2005)

    CAS  Article  Google Scholar 

  8. 8.

    F. Hoffmann, M. Cornelius, J. Morell, M. Fröba, Angew. Chem. Int. Ed. 45, 3216–3251 (2006)

    CAS  Article  Google Scholar 

  9. 9.

    M. Hartmann, Chem. Mater. 17, 4577–4593 (2005)

    CAS  Article  Google Scholar 

  10. 10.

    E.T. Hwang, M.B. Gu, Eng. Life Sci. 13, 49–61 (2013)

    CAS  Article  Google Scholar 

  11. 11.

    Y.-J. Han, G.D. Stucky, A. Butler, J. Am. Chem. Soc. 121, 9897–9898 (1999)

    CAS  Article  Google Scholar 

  12. 12.

    J. He, X. Li, D.G. Evans, X. Duan, C. Li, J. Mol. Catal. B Enzym. 11, 45–53 (2000)

    Article  Google Scholar 

  13. 13.

    J. Fan, J. Lei, L. Wang, C. Yu, B. Tu, D. Zhao, ChemComm, 2140–2141, (2003).

  14. 14.

    J. Lei, J. Fan, C. Yu, L. Zhang, S. Jiang, B. Tu, D. Zhao, Micropor. Mesopor. Mat. 73, 121–128 (2004)

    CAS  Article  Google Scholar 

  15. 15.

    H. Wan, L. Liu, C. Li, X. Xue, X. Liang, J. Colloid Interface Sci. 337, 420–426 (2009)

    CAS  Article  Google Scholar 

  16. 16.

    J. Zhu, K. Kailasam, X. Xie, R. Schomaecker, A. Thomas, Chem. Mater. 23, 2062–2067 (2011)

    CAS  Article  Google Scholar 

  17. 17.

    D. Zhao, Q. Huo, J. Feng, B.F. Chmelka, G.D. Stucky, J. Am. Chem. Soc. 120, 6024–6036 (1998)

    CAS  Article  Google Scholar 

  18. 18.

    D. Zhao, J. Sun, Q. Li, G.D. Stuky, Chem. Mater. 12, 275–279 (2000)

    CAS  Article  Google Scholar 

  19. 19.

    H.I. Lee, J.H. Kim, G.D. Stucky, Y. Shi, C. Pak, J.M. Kim, J. Mater. Chem. 20, 8419–8718 (2010)

    Article  Google Scholar 

  20. 20.

    A. Katiyar, S. Yadav, P.G. Smirniotis, N.G. Pinto, J. Chromatogr. A 1122, 13–20 (2006)

    CAS  Article  Google Scholar 

  21. 21.

    J. Deere, E. Magner, J.G. Wall, B.K. Hodnett, ChemComm, 465–466, (2001).

  22. 22.

    J. Deere, E. Magner, J.G. Wall, B.K. Hodnett, Biotechnol. Progr. 19, 1238–1243 (2003)

    CAS  Article  Google Scholar 

  23. 23.

    A. Vinu, V. Murugesan, O. Tangermann, M. Hartmann, Chem. Mater. 16, 3056–3065 (2004)

    CAS  Article  Google Scholar 

  24. 24.

    K. Kato, M. Suzuki, M. tanemura, T. Saito, J. Ceramic Soc. Jpn., 118, 410–146, (2010).

  25. 25.

    K. Nakanishi, M. Tomita, K. Kato, RSC Adv. 4, 4732–4735 (2014)

    CAS  Article  Google Scholar 

  26. 26.

    Y. Ma, L. Qi, J. Ma, Y. Wu, O. Liu, H. Cheng, Colloids Surf. A 229, 1–8 (2003)

    CAS  Article  Google Scholar 

  27. 27.

    X. Liu, L. Li, Y. Du, Z. Guo, T.T. Ong, Y. Chen, S.C. Ng, Y. Yang, J. Chromatogr. A 1216, 7767–7773 (2009)

    CAS  Article  Google Scholar 

  28. 28.

    P. Liu, G.-F. Chen, Porous materials: processing and applications, butterworth-heinemann publications. (2014).

  29. 29.

    Y. Wang, B.-Y. Gao, W.-W. Yue, Q.-Y. Yue, Colloids Surf. A 308, 1–5 (2007)

    CAS  Article  Google Scholar 

  30. 30.

    Z. Zhang, H. Li, H. Liu, J. Environ. Sci. 65, 171–178 (2018)

    Article  Google Scholar 

  31. 31.

    N. Carlsson, H. Gustafsson, C. Thörn, L. Olsson, K. Holmberg, B. Åkerman, Adv. Colloid Interface Sci. 205, 339–360 (2014)

    CAS  Article  Google Scholar 

  32. 32.

    D.K. Wilkins, S.B. Grimshaw, V. Receveur, C.M. Dobson, J.A. Jones, L.J. Smith, Biochem. 38, 16424–16431 (1999)

    CAS  Article  Google Scholar 

  33. 33.

    M. Miyahara, A. Vinu, K. Ariga, Mater. Sci. Eng. C 27, 232–236 (2007)

    CAS  Article  Google Scholar 

  34. 34.

    A. Vinu, M. Miyahara, K. Ariga, J. Phys. Chem. B 109, 6436–6441 (2005)

    CAS  Article  Google Scholar 

  35. 35.

    H. Gustafsson, C. Thörn, K. Holmberg, Colloid Surf. B: Biointerfaces 87, 464–471 (2011)

    CAS  Article  Google Scholar 

  36. 36.

    Z. Wang, T. Matsuo, S. Nagao, S. Hirota, Org. Biomol. Chem. 9, 4766 (2011)

    CAS  Article  Google Scholar 

  37. 37.

    M.A. Ator, P.R.O.D. Montellano, J. Biol. Chem., 262, 1542–1551, (1987).

  38. 38.

    C.-H. Lee, C.-Y. Mou, S.-C. Ke, T.-S. Lin, Mol. Phys. 104, 1635–1641 (2006)

    CAS  Article  Google Scholar 

  39. 39.

    J. Peisach, W.E. Blumberg, S. Ogawa, E.A. Rachmilewitz, R. Oltzik, J. Biol. Chem. 245, 3342–3355 (1971)

    Google Scholar 

  40. 40.

    F. Neri, D. Kok, M.A. Miller, G. Smulevich, Biochem. 36, 8947–8953 (1997)

    CAS  Article  Google Scholar 

  41. 41.

    S. Oellerich, H. Wackerbarth, P. Hildebrandt, Eur. Biophys. J. 32, 599–613 (2003)

    CAS  Article  Google Scholar 

Download references

Acknowledgements

This research project was supported by Faculty of Science, Mahidol University. SK also appreciated the financial support from Science Achievement Scholarship Thailand (SAST).

Funding

This research project was supported by Faculty of Science, Mahidol University, and the scholarship from the Science Achievement Scholarship Thailand (SAST).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Soraya Pornsuwan.

Ethics declarations

Conflicts of interest

There are no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 338 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Kingchok, S., Pornsuwan, S. Comparison of spherical and rod-like morphologies of SBA-15 for enzyme immobilization. J Porous Mater (2020). https://doi.org/10.1007/s10934-020-00932-x

Download citation

Keywords

  • Mesoporous material
  • Morphologies
  • SBA-15
  • Immobilization of cytochrome c
  • Peroxidase activity