Skip to main content
Log in

Comparison of spherical and rod-like morphologies of SBA-15 for enzyme immobilization

  • Published:
Journal of Porous Materials Aims and scope Submit manuscript

Abstract

Mesoporous silica, namely SBA-15, has been used for enzyme immobilization to help improve thermal stability of the enzymes and, in some cases, increase the enzymatic activity. It has been shown that morphology of SBA-15 is one of the factors influencing kinetics of enzyme adsorption. We reported, here, the adsorption kinetics and peroxidase activity of cytochrome c (cytc) in spherical SBA-15 in comparison of three different rod-like (fibrous, fiber, and rope) SBA-15 samples. The experimental adsorption profile fitted much better to the pseudo-second order than the pseudo-first order model. The maximum loading capacity of cytc was 466, 423, 390, and 352 mg/g for fibrous, rope, fiber, and spherical SBA-15, respectively. The rate constant for cytc adsorption for spherical SBA-15 was 3 times slower than rope and fiber SBA-15, and 15 times slower than fibrous SBA-15. The activity of cytc after immobilization in SBA-15 samples depended on the amount of cytc loading. The cytc loading in all SBA-15 at lower than 10 µmol/g showed higher activity than in free cytc in solution. The maximum activity of immobilized cytc was found in spherical SBA-15 at cytc loading of 1.00 µmol/g (~ 7 times higher than in free cytc). Finally, the Fe(III) at the heme group of cytc/SBA-15 samples with high activity was examined to contain high-spin state. The investigation in this work could suggest useful information for the preparation of SBA-15 for enzyme immobilization to appropriate applications, such as drug delivery.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. S. Hudson, J. Cooney, E. Magner, Angew. Chem. Int. Ed. 47, 8582–8594 (2008)

    Article  CAS  Google Scholar 

  2. J.M. Bolivar, I. Eisl, B. Nidetzky, Catal. Today 259, 66–80 (2015)

    Article  Google Scholar 

  3. C.-C. Chen, J.-S. Do, Y. Gu, Sensors 9, 4635–4648 (2009)

    Article  CAS  Google Scholar 

  4. Z. Wu, D. Zhao, ChemComm 47, 3332–3338 (2011)

    CAS  Google Scholar 

  5. M. Moritz, M. Geszke-Moritz, Mater. Sci. Eng. C 49, 114–151 (2015)

    Article  CAS  Google Scholar 

  6. J.F. Diaz, K.J. Balkus, J. Mol. Catal. B Enzym. 2, 115–126 (1996)

    Article  CAS  Google Scholar 

  7. S. Hudson, E. Magner, J. Cooney, B.K. Hodnett, J. Phys. Chem. B 109, 19496–19506 (2005)

    Article  CAS  Google Scholar 

  8. F. Hoffmann, M. Cornelius, J. Morell, M. Fröba, Angew. Chem. Int. Ed. 45, 3216–3251 (2006)

    Article  CAS  Google Scholar 

  9. M. Hartmann, Chem. Mater. 17, 4577–4593 (2005)

    Article  CAS  Google Scholar 

  10. E.T. Hwang, M.B. Gu, Eng. Life Sci. 13, 49–61 (2013)

    Article  CAS  Google Scholar 

  11. Y.-J. Han, G.D. Stucky, A. Butler, J. Am. Chem. Soc. 121, 9897–9898 (1999)

    Article  CAS  Google Scholar 

  12. J. He, X. Li, D.G. Evans, X. Duan, C. Li, J. Mol. Catal. B Enzym. 11, 45–53 (2000)

    Article  Google Scholar 

  13. J. Fan, J. Lei, L. Wang, C. Yu, B. Tu, D. Zhao, ChemComm, 2140–2141, (2003).

  14. J. Lei, J. Fan, C. Yu, L. Zhang, S. Jiang, B. Tu, D. Zhao, Micropor. Mesopor. Mat. 73, 121–128 (2004)

    Article  CAS  Google Scholar 

  15. H. Wan, L. Liu, C. Li, X. Xue, X. Liang, J. Colloid Interface Sci. 337, 420–426 (2009)

    Article  CAS  Google Scholar 

  16. J. Zhu, K. Kailasam, X. Xie, R. Schomaecker, A. Thomas, Chem. Mater. 23, 2062–2067 (2011)

    Article  CAS  Google Scholar 

  17. D. Zhao, Q. Huo, J. Feng, B.F. Chmelka, G.D. Stucky, J. Am. Chem. Soc. 120, 6024–6036 (1998)

    Article  CAS  Google Scholar 

  18. D. Zhao, J. Sun, Q. Li, G.D. Stuky, Chem. Mater. 12, 275–279 (2000)

    Article  CAS  Google Scholar 

  19. H.I. Lee, J.H. Kim, G.D. Stucky, Y. Shi, C. Pak, J.M. Kim, J. Mater. Chem. 20, 8419–8718 (2010)

    Article  Google Scholar 

  20. A. Katiyar, S. Yadav, P.G. Smirniotis, N.G. Pinto, J. Chromatogr. A 1122, 13–20 (2006)

    Article  CAS  Google Scholar 

  21. J. Deere, E. Magner, J.G. Wall, B.K. Hodnett, ChemComm, 465–466, (2001).

  22. J. Deere, E. Magner, J.G. Wall, B.K. Hodnett, Biotechnol. Progr. 19, 1238–1243 (2003)

    Article  CAS  Google Scholar 

  23. A. Vinu, V. Murugesan, O. Tangermann, M. Hartmann, Chem. Mater. 16, 3056–3065 (2004)

    Article  CAS  Google Scholar 

  24. K. Kato, M. Suzuki, M. tanemura, T. Saito, J. Ceramic Soc. Jpn., 118, 410–146, (2010).

  25. K. Nakanishi, M. Tomita, K. Kato, RSC Adv. 4, 4732–4735 (2014)

    Article  CAS  Google Scholar 

  26. Y. Ma, L. Qi, J. Ma, Y. Wu, O. Liu, H. Cheng, Colloids Surf. A 229, 1–8 (2003)

    Article  CAS  Google Scholar 

  27. X. Liu, L. Li, Y. Du, Z. Guo, T.T. Ong, Y. Chen, S.C. Ng, Y. Yang, J. Chromatogr. A 1216, 7767–7773 (2009)

    Article  CAS  Google Scholar 

  28. P. Liu, G.-F. Chen, Porous materials: processing and applications, butterworth-heinemann publications. (2014).

  29. Y. Wang, B.-Y. Gao, W.-W. Yue, Q.-Y. Yue, Colloids Surf. A 308, 1–5 (2007)

    Article  CAS  Google Scholar 

  30. Z. Zhang, H. Li, H. Liu, J. Environ. Sci. 65, 171–178 (2018)

    Article  Google Scholar 

  31. N. Carlsson, H. Gustafsson, C. Thörn, L. Olsson, K. Holmberg, B. Åkerman, Adv. Colloid Interface Sci. 205, 339–360 (2014)

    Article  CAS  Google Scholar 

  32. D.K. Wilkins, S.B. Grimshaw, V. Receveur, C.M. Dobson, J.A. Jones, L.J. Smith, Biochem. 38, 16424–16431 (1999)

    Article  CAS  Google Scholar 

  33. M. Miyahara, A. Vinu, K. Ariga, Mater. Sci. Eng. C 27, 232–236 (2007)

    Article  CAS  Google Scholar 

  34. A. Vinu, M. Miyahara, K. Ariga, J. Phys. Chem. B 109, 6436–6441 (2005)

    Article  CAS  Google Scholar 

  35. H. Gustafsson, C. Thörn, K. Holmberg, Colloid Surf. B: Biointerfaces 87, 464–471 (2011)

    Article  CAS  Google Scholar 

  36. Z. Wang, T. Matsuo, S. Nagao, S. Hirota, Org. Biomol. Chem. 9, 4766 (2011)

    Article  CAS  Google Scholar 

  37. M.A. Ator, P.R.O.D. Montellano, J. Biol. Chem., 262, 1542–1551, (1987).

  38. C.-H. Lee, C.-Y. Mou, S.-C. Ke, T.-S. Lin, Mol. Phys. 104, 1635–1641 (2006)

    Article  CAS  Google Scholar 

  39. J. Peisach, W.E. Blumberg, S. Ogawa, E.A. Rachmilewitz, R. Oltzik, J. Biol. Chem. 245, 3342–3355 (1971)

    Google Scholar 

  40. F. Neri, D. Kok, M.A. Miller, G. Smulevich, Biochem. 36, 8947–8953 (1997)

    Article  CAS  Google Scholar 

  41. S. Oellerich, H. Wackerbarth, P. Hildebrandt, Eur. Biophys. J. 32, 599–613 (2003)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research project was supported by Faculty of Science, Mahidol University. SK also appreciated the financial support from Science Achievement Scholarship Thailand (SAST).

Funding

This research project was supported by Faculty of Science, Mahidol University, and the scholarship from the Science Achievement Scholarship Thailand (SAST).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Soraya Pornsuwan.

Ethics declarations

Conflicts of interest

There are no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 338 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kingchok, S., Pornsuwan, S. Comparison of spherical and rod-like morphologies of SBA-15 for enzyme immobilization. J Porous Mater 27, 1547–1557 (2020). https://doi.org/10.1007/s10934-020-00932-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10934-020-00932-x

Keywords

Navigation