Facile synthesis of hetaryl-modified MCM-41 and targeted removal of Pb(II) ions for water purification


A novel pyrazole grafted MCM-41 hybrid has been synthesized by post-grafting method for targeted water purification. MCM-41 was first functionalized with 3-aminopropyltriethoxysilane (APTES) followed by immobilization of acyl functionalized pyrazole derivative through Schiff’s base formation. Fourier transform infrared (FTIR) spectroscopy, solid state 13C nuclear magnetic resonance (NMR) spectroscopy, thermogravimetric analysis (TGA) and elemental analysis confirmed the covalent attachment of organic moiety to the silica surface, whilst scanning electron microscope (SEM) and N2 adsorption–desorption analysis confirmed the structural integrity and the preservation of mesoporous structure of MCM-41 during surface modification. The novel material showed excellent results for the removal of Pb(II) metal ions with highest adsorption capacity (qe) of 2416 mg g−1. With this adsorption capacity, the prepared hybrid efficiently removed 96.6% of Pb(II) metal ions from aqueous solution using minimum adsorbent concentration (1 mg) ever reported. The adsorbent was reused for five cycles with minimum 94.85% removal efficiency after simple treatment with 6 N HCl. This reusable adsorbent may further be applied for heavy metal removal from industrial effluent.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12


  1. 1.

    W.H. Organization, Guidelines for drinking-water quality. Vol. 2, Health criteria and other supporting information, (1996).

  2. 2.

    Y. Feng, J.-L. Gong, G.-M. Zeng, Q.-Y. Niu, H.-Y. Zhang, C.-G. Niu, J.-H. Deng, M. Yan, Adsorption of Cd (II) and Zn (II) from aqueous solutions using magnetic hydroxyapatite nanoparticles as adsorbents. Chem. Eng. J. (Lausanne) 162, 487–494 (2010)

    CAS  Google Scholar 

  3. 3.

    A.B. Albadarin, C. Mangwandi, H. Ala’a, G.M. Walker, S.J. Allen, M.N. Ahmad, Kinetic and thermodynamics of chromium ions adsorption onto low-cost dolomite adsorbent. Chem. Eng. J. (Lausanne) 179, 193–202 (2012)

    CAS  Google Scholar 

  4. 4.

    B. Al-Rashdi, D. Johnson, N. Hilal, Removal of heavy metal ions by nanofiltration. Desalination 315, 2–17 (2013)

    CAS  Google Scholar 

  5. 5.

    V.K. Gupta, I. Ali, T.A. Saleh, A. Nayak, S. Agarwal, Chemical treatment technologies for waste-water recycling—an overview. RSC Adv. 2, 6380–6388 (2012)

    CAS  Google Scholar 

  6. 6.

    C.H. Yun, R. Prasad, A.K. Guha, K.K. Sirkar, Hollow fiber solvent extraction removal of toxic heavy metals from aqueous waste streams. Ind. Eng. Chem. Res. 32, 1186–1195 (1993)

    CAS  Google Scholar 

  7. 7.

    A. Wójtowicz, A. Stoklosa, Removal of heavy metal ions on smectite ion-exchange column. Pol. J. Environ. Stud. 11, 97–101 (2002)

    Google Scholar 

  8. 8.

    Q. Yuan, N. Li, Y. Chi, W. Geng, W. Yan, Y. Zhao, X. Li, B. Dong, Effect of large pore size of multifunctional mesoporous microsphere on removal of heavy metal ions. J. Hazard. Mater. 254, 157–165 (2013)

    PubMed  Google Scholar 

  9. 9.

    A. Beveridge, W. Pickering, The influence of surfactants on the adsorption of heavy metal ions by clays. Water Res. 17, 215–225 (1983)

    CAS  Google Scholar 

  10. 10.

    M. Machida, Y. Amano, M. Aikawa, Adsorptive removal of heavy metal ions by activated carbons. Carbon 49, 3393 (2011)

    CAS  Google Scholar 

  11. 11.

    S. Wu, F. Li, R. Xu, S. Wei, G. Li, Synthesis of thiol-functionalized MCM-41 mesoporous silicas and its application in Cu (II), Pb (II), Ag (I), and Cr (III) removal. J. Nanopart. Res. 12, 2111–2124 (2010)

    CAS  Google Scholar 

  12. 12.

    M. Algarra, M.V. Jiménez, E. Rodríguez-Castellón, A. Jiménez-López, J. Jiménez-Jiménez, Heavy metals removal from electroplating wastewater by aminopropyl-Si MCM-41. Chemosphere 59, 779–786 (2005)

    CAS  PubMed  Google Scholar 

  13. 13.

    S. Wongsakulphasatch, W. Kiatkittipong, J. Saiswat, B. Oonkhanond, A. Striolo, S. Assabumrungrat, The adsorption aspect of Cu2+ and Zn2+ on MCM-41 and SDS-modified MCM-41. Inorg. Chem. Commun. 46, 301–304 (2014)

    CAS  Google Scholar 

  14. 14.

    A. Benhamou, M. Baudu, Z. Derriche, J.-P. Basly, Aqueous heavy metals removal on amine-functionalized Si-MCM-41 and Si-MCM-48. J. Hazard. Mater. 171, 1001–1008 (2009)

    CAS  PubMed  Google Scholar 

  15. 15.

    J.S. Beck, J. Vartuli, W.J. Roth, M. Leonowicz, C. Kresge, K. Schmitt, C. Chu, D.H. Olson, E. Sheppard, S. McCullen, A new family of mesoporous molecular sieves prepared with liquid crystal templates. J. Am. Chem. Soc. 114, 10834–10843 (1992)

    CAS  Google Scholar 

  16. 16.

    L. Gai, H. Jiang, D. Cui, Q. Wang, Room temperature blue-green photoluminescence of MCM-41, MCM-48 and SBA-15 mesoporous silicas in different conditions. Microporous Mesoporous Mater. 120, 410–413 (2009)

    CAS  Google Scholar 

  17. 17.

    P. Botella, A. Corma, M. Quesada, Synthesis of ordered mesoporous silica templated with biocompatible surfactants and applications in controlled release of drugs. J. Mater. Chem. 22, 6394–6401 (2012)

    CAS  Google Scholar 

  18. 18.

    R. Guo, L.-L. Li, H. Yang, M.-J. Zhang, C.-J. Fang, T.-L. Zhang, Y.-B. Zhang, G.-H. Cui, S.-Q. Peng, W. Feng, Tuning kinetics of controlled-release in disulfide-linked MSN-folate conjugates with different fabrication procedures. Mater. Lett. 66, 79–82 (2012)

    CAS  Google Scholar 

  19. 19.

    M.C. Bruzzoniti, C. Sarzanini, A.M. Torchia, M. Teodoro, F. Testa, A. Virga, B. Onida, MCM41 functionalized with ethylenediaminetriacetic acid for ion-exchange chromatography. J. Mater. Chem. 21, 369–376 (2011)

    CAS  Google Scholar 

  20. 20.

    S. Wang, Y. Shi, X. Ma, J. Gong, Tuning porosity of Ti-MCM-41: implication for shape selective catalysis. ACS Appl. Mater. Interfaces 3, 2154–2160 (2011)

    CAS  PubMed  Google Scholar 

  21. 21.

    T. Asefa, C.T. Duncan, K.K. Sharma, Recent advances in nanostructured chemosensors and biosensors. Analyst 134, 1980–1990 (2009)

    CAS  PubMed  Google Scholar 

  22. 22.

    K.F. Lam, K.L. Yeung, G. McKay, An investigation of gold adsorption from a binary mixture with selective mesoporous silica adsorbents. J. Phys. Chem. B 110, 2187–2194 (2006)

    CAS  PubMed  Google Scholar 

  23. 23.

    K.A. Northcott, K. Miyakawa, S. Oshima, Y. Komatsu, J.M. Perera, G.W. Stevens, The adsorption of divalent metal cations on mesoporous silicate MCM-41. Chem. Eng. J. (Lausanne) 157, 25–28 (2010)

    CAS  Google Scholar 

  24. 24.

    F. Suhail, M. Batool, M.I. Din, M.A. Khan, K. Ayub, S. Tabassum, A.T. Shah, Synthesis and characterization of immobilized 1-(1, 3-diphenyl-5-hydroxy-1H-pyrazol-4-yl) ethanone on silica gel and its use for aqueous heavy metal removal. Desalination Water Treat. 142, 213–224 (2019)

    CAS  Google Scholar 

  25. 25.

    D. Chandra, S.K. Das, A. Bhaumik, A fluorophore grafted 2D-hexagonal mesoporous organosilica: excellent ion-exchanger for the removal of heavy metal ions from wastewater. Microporous Mesoporous Mater. 128, 34–40 (2010)

    CAS  Google Scholar 

  26. 26.

    S. Lacour, J.-C. Bollinger, B. Serpaud, P. Chantron, R. Arcos, Removal of heavy metals in industrial wastewaters by ion-exchanger grafted textiles. Anal. Chim. Acta 428, 121–132 (2001)

    CAS  Google Scholar 

  27. 27.

    S. Deng, R. Bai, J.P. Chen, Aminated polyacrylonitrile fibers for lead and copper removal. Langmuir 19, 5058–5064 (2003)

    CAS  Google Scholar 

  28. 28.

    J. Li, L. Wang, T. Qi, Y. Zhou, C. Liu, J. Chu, Y. Zhang, Different N-containing functional groups modified mesoporous adsorbents for Cr (VI) sequestration: synthesis, characterization and comparison. Microporous Mesoporous Mater. 110, 442–450 (2008)

    CAS  Google Scholar 

  29. 29.

    Z. Wang, D.-M. Fang, Q. Li, L.-X. Zhang, R. Qian, Y. Zhu, H.-Y. Qu, Y.-P. Du, Modified mesoporous silica materials for on-line separation and preconcentration of hexavalent chromium using a microcolumn coupled with flame atomic absorption spectrometry. Anal. Chim. Acta 725, 81–86 (2012)

    CAS  PubMed  Google Scholar 

  30. 30.

    Y. Wu, J. Zhou, Y. Jin, J. Cao, P. Yilihan, Y. Wen, Y. Wu, Mechanisms of chromium and arsenite adsorption by amino-functionalized SBA-15. Environ. Sci. Pollut. Res. 21, 1859–1874 (2014)

    CAS  Google Scholar 

  31. 31.

    S. Liu, H.-Z. Cui, Y.-L. Li, A.-L. Yang, J.-F. Zhang, R. Zhong, Q. Zhou, M. Lin, X.-F. Hou, Bis-pyrazolyl functionalized mesoporous SBA-15 for the extraction of Cr (III) and detection of Cr (VI) in artificial jewelry samples. Microchem. J. 131, 130–136 (2017)

    CAS  Google Scholar 

  32. 32.

    O. Olkhovyk, V. Antochshuk, M. Jaroniec, Benzoylthiourea-modified MCM-48 mesoporous silica for mercury (II) adsorption from aqueous solutions. Colloids Surf. A 236, 69–72 (2004)

    CAS  Google Scholar 

  33. 33.

    H. Faghihian, M. Naghavi, Synthesis of amine-functionalized MCM-41 and MCM-48 for removal of heavy metal ions from aqueous solutions. Sep. Sci. Technol. 49, 214–220 (2014)

    CAS  Google Scholar 

  34. 34.

    X. Li, C. Han, W. Zhu, W. Ma, Y. Luo, Y. Zhou, J. Yu, K. Wei, Cr (VI) Removal from aqueous by adsorption on amine-functionalized mesoporous silica prepared from silica fume. J. Chem. (2014). https://doi.org/10.1155/2014/765856

    Article  Google Scholar 

  35. 35.

    F. Ghorbani, H. Younesi, Z. Mehraban, M.S. Celik, A. Ghoreyshi, M. Anbia, Aqueous cadmium ions removal by adsorption on aptms grafted mesoporous silica mcm-41 in batch and fixed bed column processes. Int. J. Eng. 26, 473–488 (2013)

    CAS  Google Scholar 

  36. 36.

    M. Ghorbani, S.M. Nowee, Kinetic study of Pb (II) and Ni (II) adsorption onto MCM-41 aminefunctionalized nano particle. Adv. Environ. Technol. 1(2), 101–104 (2015)

    Google Scholar 

  37. 37.

    N. Hui Ying, Y.F. Yeong, Heavy metal ions removal using amine-functionalized mesoporous adsorbents. Appl. Mech. Mater. Trans. Technol. Publ. 625, 65–68 (2014)

    Google Scholar 

  38. 38.

    Z. Hamzah, N. Narawi, H.M. Rasid, A.N.M. Yusoff, Synthesis and characterization of mesoporous material functionalized with different silylating agent and their capability to remove Cu 2+. Malays. J. Anal. Sci. 16, 290–296 (2012)

    Google Scholar 

  39. 39.

    F. Marchetti, C. Pettinari, A. Cingolani, R. Pettinari, M. Rossi, F. Caruso, Organotin (IV) derivatives of novel β-diketones: Part V. Synthesis and characterization of di-and triorganotin (IV) derivatives of 4-acyl-5-pyrazolones modified in position 3 of the pyrazole. Crystal structure of (1, 3-diphenyl-4-benzoyl-pyrazolon-5-ato) triphenyltin (IV). J. Organomet. Chem. 645, 134–145 (2002)

    CAS  Google Scholar 

  40. 40.

    B.S. Jensen, The synthesis of 1-phenyl-3-methyl-4-acyl-pyrazolones-5. Acta Chem. Scand 13, 1668–1670 (1959)

    CAS  Google Scholar 

  41. 41.

    K.M.S. Khalil, Cerium modified MCM-41 nanocomposite materials via a nonhydrothermal direct method at room temperature. J. Colloid Interface Sci. 315, 562–568 (2007)

    CAS  PubMed  Google Scholar 

  42. 42.

    M. Grün, K.K. Unger, A. Matsumoto, K. Tsutsumi, Novel pathways for the preparation of mesoporous MCM-41 materials: control of porosity and morphology. Microporous Mesoporous Mater. 27, 207–216 (1999)

    Google Scholar 

  43. 43.

    H.Y. Huang, R.T. Yang, D. Chinn, C.L. Munson, Amine-grafted MCM-48 and silica xerogel as superior sorbents for acidic gas removal from natural gas. Ind. Eng. Chem. Res. 42, 2427–2433 (2003)

    CAS  Google Scholar 

  44. 44.

    A. Feliczak-Guzik, B. Jadach, H. Piotrowska, M. Murias, J. Lulek, I. Nowak, Synthesis and characterization of SBA-16 type mesoporous materials containing amine groups. Microporous Mesoporous Mater. 220, 231–238 (2016)

    CAS  Google Scholar 

  45. 45.

    E. Vunain, N.N. Opembe, K. Jalama, A.K. Mishra, R. Meijboom, Thermal stability of amine-functionalized MCM-41 in different atmospheres. J. Therm. Anal. Calorim. 115, 1487–1496 (2014)

    CAS  Google Scholar 

  46. 46.

    S. Ek, E.I. Iiskola, L. Niinistö, J. Vaittinen, T.T. Pakkanen, A. Root, A 29Si and 13C CP/MAS NMR study on the surface species of gas-phase-deposited γ-aminopropylalkoxysilanes on heat-treated silica. J. Phys. Chem. B 108, 11454–11463 (2004)

    CAS  Google Scholar 

  47. 47.

    S. Radi, C. El Abiad, N.M. Moura, M.A. Faustino, M.G.P. Neves, New hybrid adsorbent based on porphyrin functionalized silica for heavy metals removal: synthesis, characterization, isotherms, kinetics and thermodynamics studies. J. Hazard. Mater. 370, 80 (2017)

    PubMed  Google Scholar 

  48. 48.

    S. Tighadouini, S. Radi, M. Bacquet, S. Degoutin, M. Zaghrioui, S. Jodeh, I. Warad, Removal efficiency of Pb (II), Zn (II), Cd (II) and Cu (II) from aqueous solution and natural water by ketoenol–pyrazole receptor functionalized silica hybrid adsorbent. Sep. Sci. Technol. 52, 608–621 (2017)

    CAS  Google Scholar 

  49. 49.

    A.S. Amarasekara, O.S. Owereh, S.K. Aghara, Synthesis of functionalized polysiloxane 4-acylpyrazolone Schiff base ligand system and its applications in the adsorption of lanthanide ions from aqueous solutions. J. Sol-Gel Sci. Technol. 52, 382–387 (2009)

    CAS  Google Scholar 

  50. 50.

    J.A. Costa, A.C. Garcia, D.O. Santos, V.H. Sarmento, A.L. Porto, M.E.D. Mesquita, L.P. Romão, A new functionalized MCM-41 mesoporous material for use in environmental applications. J. Braz. Chem. Soc. 25, 197–207 (2014)

    CAS  Google Scholar 

  51. 51.

    K.M. Parida, D. Rath, Amine functionalized MCM-41: an active and reusable catalyst for Knoevenagel condensation reaction. J. Mol. Catal. A 310, 93–100 (2009)

    CAS  Google Scholar 

  52. 52.

    T. Liu, G. Li, N. Zhang, Y. Chen, An inorganic–organic hybrid optical sensor for heavy metal ion detection based on immobilizing 4-(2-pyridylazo)-resorcinol on functionalized HMS. J. Hazard. Mater. 201, 155–161 (2012)

    PubMed  Google Scholar 

  53. 53.

    H. Chen, Y. Wang, Preparation of MCM-41 with high thermal stability and complementary textural porosity. Ceram. Int. 28, 541–547 (2002)

    CAS  Google Scholar 

  54. 54.

    Z. Liang, W. Shi, Z. Zhao, T. Sun, F. Cui, The retained templates as “helpers” for the spherical meso-silica in adsorption of heavy metals and impacts of solution chemistry. J. Colloid Interface Sci. 496, 382–390 (2017)

    CAS  PubMed  Google Scholar 

  55. 55.

    Y. Cui, X. Chang, X. Zhu, H. Luo, Z. Hu, X. Zou, Q. He, Chemically modified silica gel with p-dimethylaminobenzaldehyde for selective solid-phase extraction and preconcentration of Cr (III), Cu (II), Ni (II), Pb (II) and Zn (II) by ICP-OES. Microchem. J. 87, 20–26 (2007)

    CAS  Google Scholar 

  56. 56.

    J. Lehn, J. Sauvage, Cryptates. XVI.[2]-Cryptates. Stability and selectivity of alkali and alkaline-earth macrobicyclic complexes. J. Am. Chem. Soc. 97, 6700–6707 (1975)

    CAS  Google Scholar 

  57. 57.

    S. Lagergren, About the theory of so-called adsorption of soluble substances. Sven. Vetenskapsakad. Handingarl 24, 1–39 (1898)

    Google Scholar 

  58. 58.

    I. Langmuir, The constitution and fundamental properties of solids and liquids, Part I. Solids. J. Am. Chem. Soc. 38, 2221–2295 (1916)

    CAS  Google Scholar 

  59. 59.

    G. Mckay, M.S. Otterburn, A.G. Sweeney, Water Res. 14, 21–27 (1980)

    CAS  Google Scholar 

  60. 60.

    W. Zhu, J. Wang, D. Wu, X. Li, Y. Luo, C. Han, W. Ma, S. He, Investigating the heavy metal adsorption of mesoporous silica materials prepared by microwave synthesis. Nanoscale Res. Lett. 12, 323 (2017)

    PubMed  PubMed Central  Google Scholar 

  61. 61.

    A. Heidari, H. Younesi, Z. Mehraban, Removal of Ni (II), Cd (II), and Pb (II) from a ternary aqueous solution by amino functionalized mesoporous and nano mesoporous silica. Chem. Eng. J. (Lausanne) 153, 70–79 (2009)

    CAS  Google Scholar 

  62. 62.

    S. Hao, Y. Zhong, F. Pepe, W. Zhu, Adsorption of Pb2+ and Cu2+ on anionic surfactant-templated amino-functionalized mesoporous silicas. Chem. Eng. J. (Lausanne) 189, 160–167 (2012)

    Google Scholar 

  63. 63.

    M. Anbia, M. Haqshenas, Adsorption studies of Pb (II) and Cu (II) ions on mesoporous carbon nitride functionalized with melamine-based dendrimer amine. Int. J. Environ. Sci. Technol. 12, 2649–2664 (2015)

    CAS  Google Scholar 

  64. 64.

    A. Shahbazi, H. Younesi, A. Badiei, Functionalized SBA-15 mesoporous silica by melamine-based dendrimer amines for adsorptive characteristics of Pb (II), Cu (II) and Cd (II) heavy metal ions in batch and fixed bed column. Chem. Eng. J. (Lausanne) 168, 505–518 (2011)

    CAS  Google Scholar 

  65. 65.

    C. Gunathilake, M.S. Kadanapitiye, O. Dudarko, S.D. Huang, M. Jaroniec, Adsorption of lead ions from aqueous phase on mesoporous silica with P-containing pendant groups. ACS Appl. Mater. Interfaces 7, 23144–23152 (2015)

    CAS  PubMed  Google Scholar 

Download references


The authors are grateful to Higher Education Commission (HEC), Pakistan for providing the Indigenous scholarship (112-22679-2PS1-329) to conduct part of this research.

Author information



Corresponding authors

Correspondence to Madeeha Batool or Asma Tufail Shah.

Ethics declarations

Conflicts of interest

The authors declare that there is no conflict of interest regarding the publication of this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 383 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Suhail, F., Batool, M., Din, M.I. et al. Facile synthesis of hetaryl-modified MCM-41 and targeted removal of Pb(II) ions for water purification. J Porous Mater (2020). https://doi.org/10.1007/s10934-020-00919-8

Download citation


  • Mesoporous silica
  • Pyrazole
  • Functionalized MCM-41
  • Adsorption capacity
  • Pb(II)