Efficient synthesis of high silica SSZ-13 zeolite via a steam-assisted crystallization process

Abstract

High silica SSZ-13 zeolite was synthesized by an efficient and green steam-assisted crystallization (SAC) method under a low alkalinity and low organic templates amount system. The as-prepared samples were characterized by XRD, SEM, N2 adsorption–desorption, TG–DTG and NH3-TPD. The results showed that the SAC method can not only remarkably improve zeolite yield but also enhance the crystallization rate of SSZ-13 zeolite compare to conventional hydrothermal route. Meanwhile, it was also found that the various content of the organic structure directing agent (N,N,N-trimethyladamantammonium hydroxide, TMAdaOH) in the dry gel can adjust flexibly the crystal size, morphology and acidity of samples. The zeolite samples with smaller particles and more strong acidity amount were more likely obtained under the higher TMAdaOH/SiO2 ratio (0.2) condition. In addition, the catalytic evaluation in methanol-to-olefins (MTO) reaction showed that the high silica SSZ-13 catalysts synthesized by SAC method exhibited longer lifetime and comparative selectivity to ethylene and propene than those of the SSZ-13s obtained by conventional hydrothermal route. Thus, the SAC route is believed to be a competitive strategy to synthesize high silica SSZ-13 zeolites with improved MTO catalytic performance.

This is a preview of subscription content, access via your institution.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

References

  1. 1.

    H. Kalipcilar, T.C. Bowen, R.D. Noble, J.L. Falconer, Chem. Mater. 14(8), 3458–3464 (2002)

    CAS  Google Scholar 

  2. 2.

    M.R. Hudson, W.L. Queen, J.A. Mason, D.W. Fickel, R.F. Lobo, C.M. Brown, J. Am. Chem. Soc. 134(4), 1970–1973 (2012)

    CAS  PubMed  Google Scholar 

  3. 3.

    T.D. Pham, Q. Liu, R.F. Lobo, Langmuir 29(2), 832–839 (2013)

    CAS  PubMed  Google Scholar 

  4. 4.

    F. Bleken, M. Bjørgen, L. Palumbo, S. Bordiga, S. Svelle, K.P. Lillerud, U. Olsbye, Top. Catal. 52(3), 218–228 (2009)

    CAS  Google Scholar 

  5. 5.

    W.L. Dai, X.M. Sun, B. Tang, G.J. Wu, L.D. Li, N.J. Guan, M. Hunger, J. Catal. 314(5), 10–20 (2014)

    CAS  Google Scholar 

  6. 6.

    N. Yamanaka, M. Itakura, Y. Kiyozumi, Y. Ide, M. Sadakane, T. Sano, Microporous Mesoporous Mater. 158(4), 141–147 (2012)

    CAS  Google Scholar 

  7. 7.

    Y.H. Wang, J.Y. Chen, X.R. Lei, Y.J. Ren, J. Wu, Adv. Powder Technol. 29(5), 1112–1118 (2018)

    CAS  Google Scholar 

  8. 8.

    B.N. Bhadra, P.W. Seo, N.A. Khan, J.W. Jun, T.W. Kim, C.U. Kim, S.H. Jhung, Catal. Today 298(01), 53–60 (2017)

    CAS  Google Scholar 

  9. 9.

    F. Zhao, L.I. Yuan, Y. Zhang, X.Y. Tan, Chem. Ind. Eng. Prog 36(01), 166–173 (2017)

    Google Scholar 

  10. 10.

    E.A. Eilertsen, B. Arstad, S. Svelle, K.P. Lillerud, Microporous Mesoporous Mater. 153(153), 94–99 (2012)

    CAS  Google Scholar 

  11. 11.

    M.A. Camblor, L.A. Villaescusa, M.J. Díaz-Cabañas, Cheminform 31(14), 59–76 (2010)

    Google Scholar 

  12. 12.

    E.A. Eilertsen, M.H. Nilsen, R. Wendelbo, U. Olsbye, K.P. Lillerud, Stud. Surf. Sci. Catal. 174(08), 265–268 (2008)

    Google Scholar 

  13. 13.

    Z. Liu, T. Wakihara, K. Oshima, D. Nishioka, Y. Hotta, S.P. Elangovan, Y. Yanaba, T. Yoshikawa, W. Chaikittisilp, T. Matsuo, Angew. Chem. 54(19), 5683–5687 (2015)

    CAS  Google Scholar 

  14. 14.

    L. Ren, Q. Wu, C. Yang, L. Zhu, C. Li, P. Zhang, H. Zhang, X. Meng, F.S. Xiao, J. Am. Chem. Soc. 134(37), 15173–15176 (2012)

    CAS  PubMed  Google Scholar 

  15. 15.

    Q.M. Wu, X. Wang, G.D. Qi, Q. Guo, S.X. Pan, X.J. Meng, J. Xu, F. Deng, F.T. Fan, Z.C. Feng, J. Am. Chem. Soc. 136(10), 4019–4025 (2014)

    CAS  PubMed  Google Scholar 

  16. 16.

    S. Inagaki, S. Shinoda, Y. Kaneko, K. Takechi, R. Komatsu, Y. Tsuboi, H. Yamazaki, J.N. Kondo, Y. Kubota, ACS Catal. 3(1), 74–78 (2013)

    CAS  Google Scholar 

  17. 17.

    C.M. Lew, Z. Li, S.I. Zones, M. Sun, Y. Yan, Microporous Mesoporous Mater. 105(1), 10–14 (2007)

    CAS  Google Scholar 

  18. 18.

    D.Y. Zhao, C.F. Xue, Adv. Mater. 20(4), 843–844 (2010)

    Google Scholar 

  19. 19.

    O. Larlus, S. Mintova, T. Bein, Microporous Mesoporous Mater. 96(1), 405–412 (2006)

    CAS  Google Scholar 

  20. 20.

    J.L. Zhang, P. Cao, H.Y. Yan, Z.J. Wu, T. Dou, Chem. Eng. J. 291, 82–93 (2016)

    CAS  Google Scholar 

  21. 21.

    W.Y. Xu, J.X. Dong, J.P. Li, J.Q. Li, F. Wu, J. Chem. Soc. Chem. Commun. 10(10), 755–756 (1990)

    Google Scholar 

  22. 22.

    Q. Wu, X. Meng, X. Gao, F.S. Xiao, Acc. Chem. Res. 51(6), 1396–1403 (2018)

    CAS  PubMed  Google Scholar 

  23. 23.

    Q. Feng, R.Y. Pei, H.G. Liu, Y.U. Haibin, L.J. Zhang, Y.R. Zhang, CIESC J. 68(3), 1231–1238 (2017)

    CAS  Google Scholar 

  24. 24.

    M. Matsukata, M. Ogura, T. Osaki, P.R.H.P. Rao, M. Nomura, E. Kikuchi, Top. Catal. 9(2), 77–92 (1999)

    CAS  Google Scholar 

  25. 25.

    S. Alfaro, M.A. Valenzuela, P. Bosch, J. Porous Mater. 16(3), 337–342 (2009)

    CAS  Google Scholar 

  26. 26.

    Y. Hirota, K. Murata, S. Tanaka, N. Nishiyama, Y. Egashira, K. Ueyama, Mater. Chem. Phys. 123(2), 507–509 (2010)

    CAS  Google Scholar 

  27. 27.

    M. Nakai, K. Miyake, R. Inoue, K. Ono, H.A. Jabri, Y. Hirota, Y. Uchida, M. Miyamoto, N. Nishiyama, Microporous Mesoporous Mater. 273, 189–195 (2018)

    Google Scholar 

  28. 28.

    Z.H. Wei, K.K. Zhu, L.Y. Xing, F. Yang, Y.S. Li, Y.R. Xu, X.D. Zhu, RSC Adv. 7(39), 24015–24021 (2017)

    Google Scholar 

  29. 29.

    R. Cai, Y. Liu, S. Gu, Y. Yan, J. Am. Chem. Soc. 132(37), 12776–12777 (2010)

    CAS  PubMed  Google Scholar 

  30. 30.

    M. Mehdipourghazi, A. Moheb, H. Kazemian, Microporous Mesoporous Mater. 136(1), 18–24 (2010)

    CAS  Google Scholar 

  31. 31.

    X.Y. Yin, N.B. Chu, X.W. Lu, Z.F. Li, H. Guo, J. Cryst. Growth 441(3), 1–11 (2016)

    CAS  Google Scholar 

  32. 32.

    L. Rodríguez-González, F. Hermes, M. Bertmer, E. Rodríguez-Castellón, A. Jiménez-López, U. Simon, Appl. Catal. A 328(2), 174–182 (2007)

    Google Scholar 

  33. 33.

    M. Niwa, N. Katada, M. Sawa, Y. Murakami, J. Phys. Chem. 99(21), 223–236 (1995)

    Google Scholar 

  34. 34.

    X.X. Wang, J.F. Zhang, T. Zhang, X. He, F.E. Song, Y.Z. Han, Y.S. Tan, RSC Adv. 6(28), 23428–23437 (2016)

    CAS  Google Scholar 

  35. 35.

    H.Y. Li, Y.Q. Wang, F.J. Meng, H.B. Chen, C. Sun, S.H. Wang, RSC Adv. 6(101), 99129–99138 (2016)

    CAS  Google Scholar 

  36. 36.

    A.S. Aldughaither, H.D. Lasa, Ind. Eng. Chem. Res. 53(40), 15303–15316 (2014)

    CAS  Google Scholar 

  37. 37.

    J. Ahmadpour, M. Taghizadeh, C. R. Chim. 18(8), 834–847 (2015)

    CAS  Google Scholar 

  38. 38.

    S. Prasad, M. Petrov, Solid State Nucl. Magn. Reson. 54(7), 26–31 (2013)

    CAS  PubMed  Google Scholar 

  39. 39.

    Y. Jin, Q. Sun, G. Qi, C. Yang, J. Xu, F. Chen, X. Meng, F. Deng, F.S. Xiao, Angew. Chem. Int. Ed. 52(35), 9172–9175 (2013)

    CAS  Google Scholar 

  40. 40.

    S. Hu, J. Shan, Q. Zhang, Y. Wang, Y.S. Liu, Y.J. Gong, Z.J. Wu, T. Dou, Appl. Catal. A 445(01), 215–220 (2012)

    Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the financial supports of the National Natural Science Foundation of China (No. 51371123), the Natural Science Foundation of Shanxi Province (No. 201701D121024), and Shanxi Scholarship Council of China (No. 2017-042).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Yuping Li.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Li, Y., Liu, R., Guo, Q. et al. Efficient synthesis of high silica SSZ-13 zeolite via a steam-assisted crystallization process. J Porous Mater 26, 1879–1888 (2019). https://doi.org/10.1007/s10934-019-00784-0

Download citation

Keywords

  • SSZ-13
  • CHA zeolite
  • Steam-assisted crystallization
  • High SiO2/Al2O3 ratios
  • MTO reaction