Adsorption of cationic and anionic dyes on montmorillonite in single and mixed wastewater

Abstract

Montmorillonite was employed as adsorbent to remove cationic and anionic dyes respectively and simultaneously. When the dye present singly, it only had a good effect to cationic dye removal. The experimental data well fitted to pseudo-second-order kinetic model, and the adsorption behavior followed the Langmuir model revealed that cationic dye adsorption was a monolayer coverage and charge-limited adsorption process. Molecular arrangement of the contaminants in the interlayer were analyzed by molecular simulation. As the cationic and anionic dyes co-exist, both cationic and anionic dyes could be removed. The adsorption mechanism of anionic dyes, under the circumstances, were investigated through equilibrium experiment, XRD and molecular dynamics simulation. The experimental data showed that anionic dyes in mixed wastewater were fitted Freundlich model well and the mechanism of anionic dyes removal was trapped by hydrophobic interaction on account of organic phase formed by cationic dyes in the interlayer.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

References

  1. 1.

    G. Wang, S. Zhang, J. Wang, S. Ma, X. Lu, S. Komarneni, Synthesis of porous Al pillared montmorillonite after pre-intercalation with dodecylamine: textural and thermal properties. J. Porous Mater. 23(6), 1687–1694 (2016)

    CAS  Article  Google Scholar 

  2. 2.

    S. Naik, J. Scholin, B. Goss, Stabilization of phytase enzyme on montmorillonite clay. J. Porous Mater. 23(2), 401–406 (2016)

    CAS  Article  Google Scholar 

  3. 3.

    M. Yu, Y. Han, J. Li, L. Wang, Magnetic carbon aerogel pyrolysis from sodium carboxymethyl cellulose/sodium montmorillonite composite aerogel for removal of organic contamination. J. Porous Mater. 25(3), 657–664 (2018)

    CAS  Article  Google Scholar 

  4. 4.

    J. Valand, A.S. Mahomed, S. Singh, H.B. Friedrich, The influence of Montmorillonite K10 as a support in the nickel catalyzed hydrogenation of octanal. J. Porous Mater. 23(1), 175–183 (2016)

    CAS  Article  Google Scholar 

  5. 5.

    D.A. Almasri, T. Rhadfi, M.A. Atieh, G. McKay, S. Ahzi, High performance hydroxyiron modified montmorillonite nanoclay adsorbent for arsenite removal. Chem. Eng. J. 335, 1–12 (2018)

    CAS  Article  Google Scholar 

  6. 6.

    Y. He, D.B. Jiang, J. Chen, D.Y. Jiang, Y.X. Zhang, Synthesis of MnO2 nanosheets on montmorillonite for oxidative degradation and adsorption of methylene blue. J. Colloid Interface Sci. 510, 207–220 (2018)

    CAS  Article  Google Scholar 

  7. 7.

    S. Ma, J.J. Hou, H. Yang, Z.L. Xu, Preparation of renewable porous TiO2/PVA composite sphere as photocatalyst for methyl orange degradation. J. Porous Mater. 25(4), 1071–1080 (2018)

    CAS  Article  Google Scholar 

  8. 8.

    L. Liu, J. Ge, L.T. Yang, X. Jiang, L.G. Qiu, Facile preparation of chitosan enwrapping Fe3O4 nanoparticles and MIL-101 (Cr) magnetic composites for enhanced methyl orange adsorption. J. Porous Mater. 23(5), 1363–1372 (2016)

    CAS  Article  Google Scholar 

  9. 9.

    K. Xia, G. Wang, H. Zhang, L. Liu, Y. Yu, L. Wang, A. Chen, Synthesis of bimodal mesoporous carbon nanospheres for methyl orange adsorption. J. Porous Mater. 24(6), 1605–1612 (2017)

    Article  Google Scholar 

  10. 10.

    P. Borralleras, I. Segura, M.A. Aranda, A. Aguado, Influence of experimental procedure on d-spacing measurement by XRD of montmorillonite clay pastes containing PCE-based superplasticizer. Cem. Concr. Res. 116, 266–272 (2019)

    CAS  Article  Google Scholar 

  11. 11.

    S. Zhu, M. Xia, Y. Chu, M.A. Khan, W. Lei, F. Wang, A. Wang, Adsorption and desorption of Pb(II) on l-lysine modified montmorillonite and the simulation of interlayer structure. Appl. Clay Sci. 169, 40–47 (2019)

    CAS  Article  Google Scholar 

  12. 12.

    S. Wang, Q. Feng, F. Javadpour, Q. Hu, K. Wu, Competitive adsorption of methane and ethane in montmorillonite nanopores of shale at supercritical conditions: a grand canonical Monte Carlo simulation study. Chem. Eng. J. 355, 76–90 (2019)

    CAS  Article  Google Scholar 

  13. 13.

    J. Ma, Y. Lei, M.A. Khan, F. Wang, Y. Chu, W. Lei, S. Zhu, Adsorption properties, kinetics & thermodynamics of tetracycline on carboxymethyl-chitosan reformed montmorillonite. Int. J. Biol. Macromol. 124, 557–567 (2019)

    CAS  Article  Google Scholar 

  14. 14.

    Y.Y. Cui, J. Zhang, L.L. Ren, A.L. Cheng, E.Q. Gao, A functional anionic metal–organic framework for selective adsorption and separation of organic dyes. Polyhedron 161, 71–77 (2019)

    CAS  Article  Google Scholar 

  15. 15.

    M. Maruthapandi, J.H. Luong, A. Gedanken, Kinetic, isotherm and mechanism studies of organic dye adsorption on poly(4, 4′-oxybisbenzenamine) and copolymer of poly(4, 4′-oxybisbenzenamine-pyrrole) macro-nanoparticles synthesized by multifunctional carbon dots. N. J. Chem. 43(4), 1926–1935 (2019)

    CAS  Article  Google Scholar 

  16. 16.

    X. Zhang, H.L. Liu, D.S. Zhang, L. Geng, A multifunctional anionic 3D Cd(II)-MOF derived from 2D layers catenation: organic dyes adsorption, cycloaddition of CO2 with epoxides and luminescence. Inorg. Chem. Commun. 101, 184–187 (2019)

    CAS  Article  Google Scholar 

  17. 17.

    J.M. Brazier, A.D. Schmitt, S. Gangloff, E. Pelt, F. Chabaux, E. Tertre, Calcium isotopic fractionation during adsorption onto and desorption from soil phyllosilicates (kaolinite, montmorillonite and muscovite). Geochim Cosmochim Acta 250, 324–347 (2019)

    CAS  Article  Google Scholar 

  18. 18.

    Y. Zhou, C. Yan, S. Zhou, T. Liang, X. Wen, Preparation of montmorillonite grafted polyacrylic acid composite and study on its adsorption properties of lanthanum ions from aqueous solution. Environ. Sci. Pollut. Res. 26, 1–15 (2019)

    CAS  Article  Google Scholar 

  19. 19.

    Y. Yang, W. Yu, S. He, S. Yu, Y. Chen, L. Lu, H. Jin, Rapid adsorption of cationic dye-methylene blue on the modified montmorillonite/graphene oxide composites. Appl. Clay Sci. 168, 304–311 (2019)

    CAS  Article  Google Scholar 

  20. 20.

    J. Qiu, G.Q. Li, S. Jiang, D.L. Liu, P. Chen, G.F. Wang, Effect of layer charge on adsorption properties of octadecyl trimethyl ammonium chloride by montmorillonite. Sci. Adv. Mater. 11(2), 299–305 (2019)

    CAS  Article  Google Scholar 

  21. 21.

    Q. Zhang, Z. Meng, Y. Zhang, G. Lv, F. Lv, L. Wu, Modification of a Na-montmorillonite with quaternary ammonium salts and its application for organics removal from TNT red water. Water Sci. Technol. 69(9), 1798–1804 (2014)

    CAS  Article  Google Scholar 

  22. 22.

    Z. Meng, F. Lv, X. Li, Q. Zhang, P.K. Chu, S. Komarneni, Y. Zhang, Simultaneous arsenate and alkali removal from alkaline wastewater by in situ formation of Zn–Al layered double hydroxide. Microporous Mesoporous Mater. 227, 137–143 (2016)

    CAS  Article  Google Scholar 

  23. 23.

    Z. Meng, Y. Zhang, Z. Zhang, Q. Zhang, P.K. Chu, S. Komarneni, F. Lv, Anomalous but massive removal of two organic dye pollutants simultaneously. J. Hazard. Mater. 318, 54–60 (2016)

    CAS  Article  Google Scholar 

Download references

Acknowledgements

The study was supported by the National Natural Science Foundation of China (Nos. 41671322, 41877122), SDUT and Zibo City Integration Development Project (No. 2016ZBXC102) and Shandong Province Major Science and Technology Innovation Projects (2018CXGC1011).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Zilin Meng.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Zhang, Q., Jing, R., Zhao, S. et al. Adsorption of cationic and anionic dyes on montmorillonite in single and mixed wastewater. J Porous Mater 26, 1861–1867 (2019). https://doi.org/10.1007/s10934-019-00782-2

Download citation

Keywords

  • Adsorption
  • Montmorillonite
  • Dyes
  • Molecular simulation