Tailoring porous carbon aerogels from bamboo cellulose fibers for high-performance supercapacitors


The synthesis and electrical double-layer capacitor (EDLC) application of hierarchical porous bio-carbons with micropores to macropores have attracted considerable attention due to the limited fuels and environmental issues. The dependence of EDLC performance on the microstructure, pore texture, electrical conductivity and surface functionality of porous carbon aerogels (PCAs) originating from bamboo cellulose, were investigated. The result demonstrates that the highest stability EDLC has excellent cycle life with 100% capacitance retention at 30,000th cycle, which is mainly attributed to a hierarchically porous structure of owning a large micropore volume and a small mean pore size instead of the highest specific surface area. The superior capacitance and rate capability are highly dependent on the surface area and pore volume of PCAs, which are improved by increasing both activation temperature and KOH mass. These results provide another view for developing renewable and high-stable supercapacitors based on porous carbon aerogels with a large micropore volume.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6


  1. 1.

    H. Jin, J. Li, Y. Yuan, J. Wang, J. Lu, S. Wang, Adv. Energy Mater. 8, 1801007 (2018)

    Google Scholar 

  2. 2.

    G. Lin, R. Ma, Y. Zhou, Q. Liu, X. Dong, J. Wang, Electrochim. Acta 261, 49–57 (2018)

    CAS  Google Scholar 

  3. 3.

    P. Simon, Y. Gogotsi, Nat. Mater. 7, 845–854 (2008)

    CAS  PubMed  Google Scholar 

  4. 4.

    Y. Xu, S. Wang, M. Yan, L. Zhang, Z. Zhai, Z. Liu, J. Porous Mater. 25, 1–7 (2018)

    Google Scholar 

  5. 5.

    M. Biswal, A. Banerjee, M. Deo, S. Ogale, Energy Environ. Sci. 6, 1249–1259 (2013)

    CAS  Google Scholar 

  6. 6.

    R. Thangavel, B. Moorthy, D.K. Kim, Y.S. Lee, Adv. Energy Mater. 7, 1602654 (2017)

    Google Scholar 

  7. 7.

    G. Ma, Q. Yang, K. Sun, H. Peng, F. Ran, X. Zhao, Z.Q. Lei, Bioresource Technol. 197, 137–142 (2015)

    CAS  Google Scholar 

  8. 8.

    Q. Wang, Q. Cao, X. Wang, B. Jing, H. Kuang, L. Zhou, J. Power Sources 225, 101–107 (2013)

    CAS  Google Scholar 

  9. 9.

    Y. Liu, Z. Shi, Y. Gao, W. An, Z. Cao, J. Liu, A.C.S. Appl, Mater. Inter. 8, 28283–28290 (2016)

    CAS  Google Scholar 

  10. 10.

    P. Cheng, S. Gao, P. Zang, X. Yang, Y. Bai, H. Xu, Z. Liu, Z. Lei, Carbon 93, 315–324 (2015)

    CAS  Google Scholar 

  11. 11.

    P. Hao, Z. Zhao, J. Tian, H. Li, Y. Sang, G. Yu, H. Cai, H. Liu, C.P. Wong, A. Umar, Nanoscale 6, 12120 (2014)

    CAS  PubMed  Google Scholar 

  12. 12.

    X. Xu, J. Zhou, D.H. Nagaraju, L. Jiang, V.R. Marinov, G. Lubineau, H.N. Alshareef, M. Oh, Adv. Funct. Mater. 25, 3193–3202 (2015)

    CAS  Google Scholar 

  13. 13.

    Y. Hu, X. Tong, H. Zhuo, L. Zhong, X. Peng, S. Wang, R. Sun, RSC Adv. 6, 15788–15795 (2016)

    CAS  Google Scholar 

  14. 14.

    H. Zhuo, Y.J. Hu, T. Xing, L.X. Zhong, X.W. Peng, R.C. Sun, Ind. Crop Prod. 87, 229–235 (2016)

    CAS  Google Scholar 

  15. 15.

    G. Zu, J. Shen, L. Zou, F. Wang, X. Wang, Y. Zhang, X. Yao, Carbon 99, 203–211 (2016)

    CAS  Google Scholar 

  16. 16.

    J. Li, X. Wang, Y. Wang, Q. Huang, C. Dai, S. Gamboa, P.J. Sebastian, J. Non-Cryst. Solids 354, 19–24 (2008)

    CAS  Google Scholar 

  17. 17.

    M. Oschatz, S. Boukhalfa, W. Nickel, J.P. Hofmann, C. Fischer, G. Yushin, S. Kaskel, Carbon 113, 283–291 (2017)

    CAS  Google Scholar 

  18. 18.

    J. Zhang, X.S. Zhao, Chemsuschem 5, 818–841 (2012)

    CAS  PubMed  Google Scholar 

  19. 19.

    M. Seredych, D. Hulicova-Jurcakova, Q.L. Gao, T.J. Bandosz, Carbon 46, 1475–1488 (2008)

    CAS  Google Scholar 

  20. 20.

    S.L. Candelaria, G. Cao, Sci. Bull. 60, 1–11 (2015)

    Google Scholar 

  21. 21.

    J. Chmiola, G. Yushin, Y. Gogotsi, C. Portet, P. Simon, P.L. Taberna, Science 313, 1760–1763 (2006)

    CAS  PubMed  Google Scholar 

  22. 22.

    J.S. Huang, B.G. Sumpter, V. Meunier, Chemistry 14, 6614–6626 (2010)

    Google Scholar 

  23. 23.

    C. Merlet, B. Rotenberg, P.A. Madden, P.L. Taberna, P. Simon, Y. Gogotsi, M. Salanne, Nat. Mater. 11, 306–310 (2012)

    CAS  PubMed  Google Scholar 

  24. 24.

    A. Barroso-Bogeat, M. Alexandre-Franco, C. Fernández-González, A. Macías-García, V. Gómez-Serrano, Micropro. Mesopro. Mat. 209, 90–98 (2015)

    CAS  Google Scholar 

  25. 25.

    K. Karthikeyan, S. Amaresh, S.N. Lee, X. Sun, V. Aravindan, Y.G. Lee, Y.S. Lee, Chemsuschem 7, 1435–1442 (2014)

    CAS  PubMed  Google Scholar 

  26. 26.

    L. Qiang, Z. Hu, Z. Li, Y. Yang, X. Wang, Y. Zhou, X. Zhang, W. Wang, Q. Wang, J. Porous Mater. (2019). https://doi.org/10.1007/s10934-019-00723-z

    Article  Google Scholar 

  27. 27.

    J. Wang, S. Kaskel, J. Mater. Chem. 22, 23710–23725 (2012)

    CAS  Google Scholar 

  28. 28.

    X. Yang, B.H. Fei, J.F. Ma, X.E. Liu, S.M. Yang, G.L. Tian, Z.H. Jiang, Carbohyd. Polym. 180, 385–392 (2018)

    CAS  Google Scholar 

  29. 29.

    W. Zhang, H. Lin, Z. Lin, J. Yin, H. Lu, D. Liu, M. Zhao, Chemsuschem 8, 2114–2122 (2015)

    CAS  PubMed  Google Scholar 

  30. 30.

    Y.S. Yun, S.Y. Cho, J. Shim, B.H. Kim, S.J. Chang, S.J. Baek, Y.S. Huh, Y. Tak, Y.W. Park, S. Park, H. Jin, Adv. Mater. 25, 1993–1998 (2013)

    CAS  PubMed  Google Scholar 

  31. 31.

    J. Zhou, M. Wang, X. Li, J. Porous Mater. 26, 99–108 (2019)

    CAS  Google Scholar 

  32. 32.

    J. Yi, Q. Yan, C.T. Wu, Y. Zeng, Y. Wu, X. Lu, Y. Tong, J. Power Sources 351, 130–137 (2017)

    CAS  Google Scholar 

  33. 33.

    J. Yin, D. Zhang, J. Zhao, X. Wang, H. Zhu, C. Wang, Electrochim. Acta 136, 504–512 (2014)

    CAS  Google Scholar 

  34. 34.

    S.Y. Lu, M. Jin, Y. Zhang, Y.B. Niu, C.M. Li, Adv. Energy Mater. 7, 1702545 (2017)

    Google Scholar 

  35. 35.

    Z. Wang, Y. Tan, Y. Yang, X. Zhao, Y. Liu, L. Niu, B. Tichnell, L. Kong, Z. Liu, F. Ran, J. Power Sources 378, 499–510 (2018)

    CAS  Google Scholar 

  36. 36.

    C. Largeot, C. Portet, J. Chmiola, P.L. Taberna, Y. Gogotsi, P. Simon, J. Am. Chem. Soc. 130, 2730–2731 (2008)

    CAS  PubMed  Google Scholar 

  37. 37.

    D. Hulicova-Jurcakova, M. Seredych, G.Q. Lu, T.J. Bandosz, Adv. Funct. Mater. 19, 438–447 (2009)

    CAS  Google Scholar 

  38. 38.

    A. Eftekhari, M. Mohamedi, Mater. Today Energy 6, 211–229 (2017)

    Google Scholar 

  39. 39.

    X. Guo, J. Energy Chem. 25, 26–34 (2016)

    Google Scholar 

  40. 40.

    E.U.E. Com, E. Com, J. Energy Chem. 26, 783–789 (2017)

    Google Scholar 

  41. 41.

    M. Yu, J. Li, L. Wang, Chem. Eng. J. 310, 300–306 (2016)

    Google Scholar 

  42. 42.

    R. Thangavel, K. Kaliyappan, H.V. Ramasamy, X. Sun, Y.S. Lee, Chemsuschem 10, 2805–2815 (2017)

    CAS  PubMed  Google Scholar 

  43. 43.

    A. Eftekhari, J. Mater. Chem. A 6, 2866–2876 (2018)

    CAS  Google Scholar 

  44. 44.

    A. Eftekhari, ACS Sustain. Chem. Eng. 7, 3692–3701 (2019)

    CAS  Google Scholar 

  45. 45.

    D. Sheberla, J.C. Bachman, J.S. Elias, C.J. Sun, Y. Shao-Horn, M. Dincă, Nat. Mater. 16, 220–224 (2017)

    CAS  PubMed  Google Scholar 

  46. 46.

    A. Vu, X. Li, J. Phillips, A. Han, W.H. Smyrl, P. Bühlmann, Chem. Mater. 25, 4137–4148 (2013)

    CAS  Google Scholar 

  47. 47.

    Q. Wang, J. Yan, Y.B. Wang, T. Wei, M.L. Zhang, X.Y. Jing, Z.J. Fan, Carbon 67, 119–127 (2014)

    CAS  Google Scholar 

Download references


This work was financially supported by the Foundation of Central South University of Forestry and Technology (2018YJ033) and National Key Research and Development Program of China (2017YFD0600804).

Author information



Corresponding authors

Correspondence to Xi Yang or Xianjun Li.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 262 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Yang, X., Liu, X., Cao, M. et al. Tailoring porous carbon aerogels from bamboo cellulose fibers for high-performance supercapacitors. J Porous Mater 26, 1851–1860 (2019). https://doi.org/10.1007/s10934-019-00780-4

Download citation


  • Porous carbon aerogels
  • Bamboo cellulose fibers
  • Hierarchical porous structure
  • Supercapacitors