CO2 capture using amine incorporated UiO-66 in atmospheric pressure

Abstract

Composite material, tetraethylenepentamine (TEPA) incorporated UiO-66 was prepared by impregnation method to study CO2 capture in a fixed bed reactor, atmospheric pressure. All synthesized adsorbents were characterized using PXRD, N2 adsorption–desorption isotherms, FT-IR, TGA, SEM, and Elemental analysis. Characterization results have revealed that incorporated TEPA was present within pores of UiO-66. CO2 adsorption was higher on TEPA incorporated UiO-66 compared to UiO-66. It was due to the chemical interaction between –NH2 and CO2. High CO2 adsorption capacity 3.70 mmol g−1 was obtained on 30TEPA/UiO-66 at 75 °C, 1 bar. Because of more flexibility and high dispersive nature of TEPA at this temperature. The same CO2 adsorption capacity was obtained in each adsorption cycle without decomposition of the amine on 30TEPA/UiO-66. Avrami adsorption kinetic model has suggested adsorption of CO2 on composite material was chemical adsorption and deactivation model suggested an initial rate of adsorption was higher on TEPA incorporated UiO-66.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

References

  1. 1.

    M. Li, K. Huang, J.A. Schott, Z. Wu, S. Dai, Microporous Mesoporous Mater. 249, 34–41 (2017)

    CAS  Article  Google Scholar 

  2. 2.

    D. Aaron, C. Tsouris, Sep. Sci. Technol. 40, 321–348 (2005)

    CAS  Article  Google Scholar 

  3. 3.

    B. Guo, L. Chang, K. Xie, J. Nat. Gas Chem. 15, 223–229 (2006)

    CAS  Article  Google Scholar 

  4. 4.

    S. Hu, C. Li, D. Wan, K. Li, C. Yu, W. Kong, J. Porous Mater. 25, 1691–1696 (2018)

    CAS  Article  Google Scholar 

  5. 5.

    M.R. Delgado, C.O. Arean, Energy 36, 5286–5291 (2011)

    CAS  Article  Google Scholar 

  6. 6.

    F. Gholipour, M. Mofarahi, J. Supercrit. Fluids 111, 47–54 (2016)

    CAS  Article  Google Scholar 

  7. 7.

    N. Chalal, H. Bouhali, H. Hamaizi, B. Lebeau, A. Bengueddach, Microporous Mesoporous Mater. 210, 32–38 (2015)

    CAS  Article  Google Scholar 

  8. 8.

    T.L. Chew, A.L. Ahmad, S. Bhatia, Adv. Colloid Interface Sci. 153, 43–57 (2010)

    CAS  Article  Google Scholar 

  9. 9.

    A. Dhakshinamoorthy, A.M. Asiri, J.R. Herance, H. Garcia, Catal. Today 306, 2–8 (2018)

    CAS  Article  Google Scholar 

  10. 10.

    O.A. Kholdeeva, Catal. Today 278, 22–29 (2016)

    CAS  Article  Google Scholar 

  11. 11.

    B. Li, H. Wang, B. Chen, Chem. Asian J. 9, 1474–1498 (2014)

    CAS  Article  Google Scholar 

  12. 12.

    A. Argoub, R. Ghezini, C. Bachir, B. Boukoussa, A. Khelifa, A. Bengueddach, P.G. Weidler, R. Hamacha, J. Porous Mater. 25, 199–205 (2018)

    CAS  Article  Google Scholar 

  13. 13.

    C. Orellana-Tavra, S.A. Mercado, D. Fairen-Jimenez, Adv. Healthc. Mater. 5, 2261–2270 (2016)

    CAS  Article  Google Scholar 

  14. 14.

    C.-Y. Sun, C. Qin, X.-L. Wang, Z.-M. Su, Expert Opin. Drug Deliv. 10, 89–101 (2013)

    Article  Google Scholar 

  15. 15.

    E. Redel, Z. Wang, S. Walheim, J. Liu, H. Gliemann, C. Wöll, Appl. Phys. Lett. 103, 091903–091907 (2013)

    Article  Google Scholar 

  16. 16.

    H.R. Abid, Z.H. Rada, J. Shang, S. Wang, Polyhedron 120, 103–111 (2016)

    CAS  Article  Google Scholar 

  17. 17.

    Z. Bao, S. Alnemrat, L. Yu, I. Vasiliev, Q. Ren, X. Lu, S. Deng, J. Colloid Interface Sci. 357, 504–509 (2011)

    CAS  Article  Google Scholar 

  18. 18.

    J.H. Cavka, S. Jakobsen, U. Olsbye, N. Guillou, C. Lamberti, S. Bordiga, K.P. Lillerud, J. Am. Chem. Soc. 130, 13850–13851 (2008)

    Article  Google Scholar 

  19. 19.

    Y. Lin, H. Lin, H. Wang, Y. Suo, B. Li, C. Kong, L. Chen, J. Mater. Chem. A 2, 14658–14665 (2014)

    CAS  Article  Google Scholar 

  20. 20.

    F. Martínez, R. Sanz, G. Orcajo, D. Briones, V. Yángüez, Chem. Eng. Sci. 142, 55–61 (2016)

    Article  Google Scholar 

  21. 21.

    X. Wang, L. Chen, Q. Guo, Chem. Eng. J. 260, 573–581 (2015)

    CAS  Article  Google Scholar 

  22. 22.

    W. Wang, X. Wang, C. Song, X. Wei, J. Ding, J. Xiao, Energy Fuels 27, 1538–1546 (2013)

    CAS  Article  Google Scholar 

  23. 23.

    M.B. Yue, Y. Chun, Y. Cao, X. Dong, J.H. Zhu, Adv. Funct. Mater. 16, 1717–1722 (2006)

    CAS  Article  Google Scholar 

  24. 24.

    M. Anbia, V. Hoseini, J. Nat. Gas Chem. 21, 339–343 (2012)

    CAS  Article  Google Scholar 

  25. 25.

    C. Zlotea, D. Phanon, M. Mazaj, D. Heurtaux, V. Guillerm, C. Serre, P. Horcajada, T. Devic, E. Magnier, F. Cuevas, G. Ferey, P.L. Llewellyn, M. Latroche, Dalton Trans. 40, 4879–4881 (2011)

    CAS  Article  Google Scholar 

  26. 26.

    K. Upendar, T.V. Sagar, G. Raveendra, N. Lingaiah, B.V.S.K. Rao, R.B.N. Prasad, P.S.S. Prasad, RSC Adv. 4, 7142–7147 (2014)

    CAS  Article  Google Scholar 

  27. 27.

    Q. Liu, J. Shi, Q. Wang, M. Tao, Y. He, Y. Shi, Ind. Eng. Chem. Res. 53, 17468–17475 (2014)

    CAS  Article  Google Scholar 

  28. 28.

    S. Øien, D. Wragg, H. Reinsch, S. Svelle, S. Bordiga, C. Lamberti, K.P. Lillerud, Cryst. Growth Des. 14, 5370–5372 (2014)

    Article  Google Scholar 

  29. 29.

    S. Salehi, M. Anbia, Energy Fuels 31, 5376–5384 (2017)

    CAS  Article  Google Scholar 

  30. 30.

    Y. Lin, Q. Yan, C. Kong, L. Chen, Sci. Rep. 3, 1859 (2013)

    Article  Google Scholar 

  31. 31.

    H.R. Abid, G.H. Pham, H.M. Ang, M.O. Tade, S. Wang, J. Colloid Interface Sci. 366, 120–124 (2012)

    CAS  Article  Google Scholar 

  32. 32.

    J. Ding, Z. Yang, C. He, X. Tong, Y. Li, X. Niu, H. Zhang, J. Colloid Interface Sci. 497, 126–133 (2017)

    CAS  Article  Google Scholar 

  33. 33.

    X. Wang, H. Li, X.J. Hou, J. Phys. Chem. C 116, 19814–19821 (2012)

    CAS  Article  Google Scholar 

  34. 34.

    X. Su, L. Bromberg, V. Martis, F. Simeon, A. Huq, T.A. Hatton, A.C.S. Appl, Mater. Interfaces 9, 11299–11306 (2017)

    CAS  Article  Google Scholar 

  35. 35.

    L. Guo, J. Yang, G. Hu, X. Hu, H. DaCosta, M. Fan, Nano Energy 25, 1–8 (2016)

    CAS  Article  Google Scholar 

  36. 36.

    L. Guo, X. Hu, G. Hu, J. Chen, Z. Li, W. Dai, H.F.M. Dacosta, M. Fan, Fuel Process. Technol. 138, 663–669 (2015)

    CAS  Article  Google Scholar 

  37. 37.

    G. Zhang, P. Zhao, L. Hao, Y. Xu, J CO2 Util. 24, 22–33 (2018)

    CAS  Article  Google Scholar 

  38. 38.

    X. Wang, Q. Guo, Energy Fuels 30, 3281–3288 (2016)

    CAS  Article  Google Scholar 

  39. 39.

    Y. Liu, J. Shi, J. Chen, Q. Ye, H. Pan, Z. Shao, Y. Shi, Microporous Mesoporous Mater. 134, 16–21 (2010)

    CAS  Article  Google Scholar 

Download references

Acknowledgements

This work is supported by National Natural Science Foundation of China (NSFC: 51702205) and STU scientific research foundation for Talents (NTF17001).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Suresh Mutyala.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Mutyala, S., Yu, YD., Jin, WG. et al. CO2 capture using amine incorporated UiO-66 in atmospheric pressure. J Porous Mater 26, 1831–1838 (2019). https://doi.org/10.1007/s10934-019-00779-x

Download citation

Keywords

  • Tetraethylenepentamine
  • UiO-66
  • CO2 capture
  • Fixed bed reactor
  • Adsorption kinetic model
  • Deactivation model