Degradation of tetracycline by a novel MIL-101(Fe)/TiO2 composite with persulfate


An effective catalyst of MIL-101(Fe)/TiO2 composite was synthesized by solvothermal method. The resultant MIL-101(Fe)/TiO2 was used for advanced oxidation degradation of tetracycline (TC) for the first time. The results indicated that the MIL-101(Fe)/TiO2 showed higher TC degradation efficiency than pure MIL-101(Fe) or TiO2 with the persulfate. Using 1 g L−1 MIL-101(Fe)/TiO2 and persulfate at pH 7, 90.15% degradation rate was achieved under xenon lamp irradiation in 5 min for 20 mg L−1 TC. TiO2 introduced in the composite played an important role in the degradation process, in which TiO2 had a synergetic effect with Fe3+ to generate Fe2+, Ti3+ and radicals. Fe2+ reacted with persulfate to produce Fe3+ and a number of ·OH to degrade TC. This reaction process was so fast that MIL-101(Fe)/TiO2 with persulfate could degrade TC fairly rapidly. A novel TiO2-based metal–organic frameworks (MOFs) composite was more efficient for degrading pharmaceutical wastewater.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12


  1. 1.

    C. Liu, G. Wu, J. Chen, K. Huang, W. Shi, Fabrication of a visible-light-driven photocatalyst and degradation of tetracycline based on the photoinduced interfacial charge transfer of SrTi3/Fe2O3 nanowires. New J. Chem. 40, 5198–5208 (2016)

    CAS  Google Scholar 

  2. 2.

    Y.-Y. Chen, Y.-L. Ma, J. Yang, L.-Q. Wang, J.-M. Lv, C.-J. Ren, Aqueous tetracycline degradation by H2O2 alone: removal and transformation pathway. Chem. Eng. J. 307, 15–23 (2017)

    CAS  Google Scholar 

  3. 3.

    H. Liu, G. Zhang, C. Liu, L. Li, M. Xiang, Characteristics of chloramphenicol and tetracyclines in municipal sewage and Nanming River of Guiyang City, China. Huan jing ke xue Huanjing kexue 30, 687–692 (2009)

    CAS  PubMed  Google Scholar 

  4. 4.

    Y. Jiang, M. Li, C. Guo, D. An, J. Xu, Y. Zhang, B. Xi, Distribution and ecological risk of antibiotics in a typical effluent–receiving river (Wangyang River) in north China. Chemosphere 112, 267–274 (2014)

    CAS  PubMed  Google Scholar 

  5. 5.

    A. Selvam, K. Kwok, Y. Chen, A. Cheung, K.S. Leung, J.W. Wong, Influence of livestock activities on residue antibiotic levels of rivers in Hong Kong. Environ. Sci. Pollut. Res. 24, 9058–9066 (2017)

    CAS  Google Scholar 

  6. 6.

    S.-Z. Li, X.-Y. Li, D.-Z. Wang, Membrane (RO-UF) filtration for antibiotic wastewater treatment and recovery of antibiotics. Sep. Purif. Technol. 34, 109–114 (2004)

    CAS  Google Scholar 

  7. 7.

    J. Radjenović, M. Petrović, F. Ventura, D. Barceló, Rejection of pharmaceuticals in nanofiltration and reverse osmosis membrane drinking water treatment. Water Res. 42, 3601–3610 (2008)

    PubMed  Google Scholar 

  8. 8.

    K. Košutić, D. Dolar, D. Ašperger, B. Kunst, Removal of antibiotics from a model wastewater by RO/NF membranes. Sep. Purif. Technol. 53, 244–249 (2007)

    Google Scholar 

  9. 9.

    V. Homem, L. Santos, Degradation and removal methods of antibiotics from aqueous matrices–a review. J. Environ. Manag. 92, 2304–2347 (2011)

    CAS  Google Scholar 

  10. 10.

    K.-J. Choi, S.-G. Kim, S.-H. Kim, Removal of antibiotics by coagulation and granular activated carbon filtration. J. Hazard. Mater. 151, 38–43 (2008)

    CAS  PubMed  Google Scholar 

  11. 11.

    J.L. Rowsell, O.M. Yaghi, Metal–organic frameworks: a new class of porous materials. Microporous Mesoporous Mater. 73, 3–14 (2004)

    CAS  Google Scholar 

  12. 12.

    Y. Belmabkhout, R.S. Pillai, D. Alezi, O. Shekhah, P.M. Bhatt, Z. Chen, K. Adil, S. Vaesen, G. De Weireld, M. Pang, Metal–organic frameworks to satisfy gas upgrading demands: fine-tuning the soc-MOF platform for the operative removal of H 2 S. J. Mater. Chem. A 5, 3293–3303 (2017)

    CAS  Google Scholar 

  13. 13.

    T. Hu, H. Lv, S. Shan, Q. Jia, H. Su, N. Tian, S. He, Porous structured MIL-101 synthesized with different mineralizers for adsorptive removal of oxytetracycline from aqueous solution. RSC Adv. 6, 73741–73747 (2016)

    CAS  Google Scholar 

  14. 14.

    T. Hu, Q. Jia, S. He, S. Shan, H. Su, Y. Zhi, L. He, Novel functionalized metal-organic framework MIL-101 adsorbent for capturing oxytetracycline. J. Alloys Compd. 727, 114–122 (2017)

    CAS  Google Scholar 

  15. 15.

    N. Tian, Q. Jia, H. Su, Y. Zhi, A. Ma, J. Wu, S. Shan, The synthesis of mesostructured NH2-MIL-101 (Cr) and kinetic and thermodynamic study in tetracycline aqueous solutions. J. Porous Mater. 23, 1269–1278 (2016)

    CAS  Google Scholar 

  16. 16.

    K. Rajeshwar, J.G. Ibanez, Environmental Electrochemistry: Fundamentals and Applications in Pollution Sensors and Abatement (Elsevier, San Diego, 1997)

    Google Scholar 

  17. 17.

    M. Miyata, I. Ihara, G. Yoshid, K. Toyod, K. Umetsu, Electrochemical oxidation of tetracycline antibiotics using a Ti/IrO2 anode for wastewater treatment of animal husbandry. Water Sci. Technol. 63, 456–461 (2011)

    CAS  PubMed  Google Scholar 

  18. 18.

    M. Panizza, G. Cerisola, Direct and mediated anodic oxidation of organic pollutants. Chem. Rev. 109, 6541–6569 (2009)

    CAS  PubMed  Google Scholar 

  19. 19.

    L. Hou, L. Wang, S. Royer, H. Zhang, Ultrasound-assisted heterogeneous Fenton-like degradation of tetracycline over a magnetite catalyst. J. Hazard. Mater. 302, 458–467 (2016)

    CAS  PubMed  Google Scholar 

  20. 20.

    S. Yang, P. Wang, X. Yang, L. Shan, W. Zhang, X. Shao, R. Niu, Degradation efficiencies of azo dye Acid Orange 7 by the interaction of heat, UV and anions with common oxidants: persulfate, peroxymonosulfate and hydrogen peroxide. J. Hazard. Mater. 179, 552–558 (2010)

    CAS  PubMed  Google Scholar 

  21. 21.

    C. Tan, N. Gao, Y. Deng, W. Rong, S. Zhou, N. Lu, Degradation of antipyrine by heat activated persulfate. Sep. Purif. Technol. 109, 122–128 (2013)

    CAS  Google Scholar 

  22. 22.

    Y. Lei, C.-S. Chen, Y.-J. Tu, Y.-H. Huang, H. Zhang, Heterogeneous degradation of organic pollutants by persulfate activated by CuO-Fe3O4: mechanism, stability, and effects of pH and bicarbonate ions. Environ. Sci. Technol. 49, 6838–6845 (2015)

    CAS  PubMed  Google Scholar 

  23. 23.

    P. Villegas-Guzman, J. Silva-Agredo, O. Florez, A.L. Giraldo-Aguirre, C. Pulgarin, R.A. Torres-Palma, Selecting the best AOP for isoxazolyl penicillins degradation as a function of water characteristics: effects of pH, chemical nature of additives and pollutant concentration. J. Environ. Manag. 190, 72–79 (2017)

    CAS  Google Scholar 

  24. 24.

    L.W. Matzek, K.E. Carter, Sustained persulfate activation using solid iron: kinetics and application to ciprofloxacin degradation. Chem. Eng. J. 307, 650–660 (2017)

    CAS  Google Scholar 

  25. 25.

    G.P. Anipsitakis, D.D. Dionysiou, Radical generation by the interaction of transition metals with common oxidants. Environ. Sci. Technol. 38, 3705–3712 (2004)

    CAS  PubMed  Google Scholar 

  26. 26.

    L. Bu, S. Zhou, Z. Shi, C. Bi, S. Zhu, N. Gao, Iron electrode as efficient persulfate activator for oxcarbazepine degradation: performance, mechanism, and kinetic modeling. Sep. Purif. Technol. 178, 66–74 (2017)

    CAS  Google Scholar 

  27. 27.

    Y. Gao, S. Li, Y. Li, L. Yao, H. Zhang, Accelerated photocatalytic degradation of organic pollutant over metal-organic framework MIL-53 (Fe) under visible LED light mediated by persulfate. Appl. Catal. B 202, 165–174 (2017)

    CAS  Google Scholar 

  28. 28.

    X. Li, W. Guo, Z. Liu, R. Wang, H. Liu, Fe-based MOFs for efficient adsorption and degradation of acid orange 7 in aqueous solution via persulfate activation. Appl. Surf. Sci. 369, 130–136 (2016)

    CAS  Google Scholar 

  29. 29.

    G. Férey, C. Mellot-Draznieks, C. Serre, F. Millange, J. Dutour, S. Surblé, I. Margiolaki, A chromium terephthalate-based solid with unusually large pore volumes and surface area. Science 309, 2040–2042 (2005)

    PubMed  Google Scholar 

  30. 30.

    Y.K. Seo, J.W. Yoon, J.S. Lee, Y.K. Hwang, C.H. Jun, J.S. Chang, S. Wuttke, P. Bazin, A. Vimont, M. Daturi, Energy-efficient dehumidification over hierachically porous metal-organic frameworks as advanced water adsorbents. Adv. Mater. 24, 806–810 (2012)

    CAS  PubMed  Google Scholar 

  31. 31.

    K.-Y.A. Lin, H.-A. Chang, C.-J. Hsu, Iron-based metal organic framework, MIL-88A, as a heterogeneous persulfate catalyst for decolorization of Rhodamine B in water. RSC Adv. 5, 32520–32530 (2015)

    Google Scholar 

  32. 32.

    S. Rodriguez, L. Vasquez, D. Costa, A. Romero, A. Santos, Oxidation of Orange G by persulfate activated by Fe(II), Fe(III) and zero valent iron (ZVI). Chemosphere 101, 86–92 (2014)

    CAS  PubMed  Google Scholar 

  33. 33.

    D. Han, J. Wan, Y. Ma, Y. Wang, Y. Li, D. Li, Z. Guan, New insights into the role of organic chelating agents in Fe(II) activated persulfate processes. Chem. Eng. J. 269, 425–433 (2015)

    CAS  Google Scholar 

  34. 34.

    J.J.M. Vequizo, H. Matsunaga, T. Ishiku, S. Kamimura, T. Ohno, A. Yamakata, Trapping-induced enhancement of photocatalytic activity on brookite TiO2 powders: comparison with anatase and rutile TiO2 powders. ACS Catal. 7, 2644–2651 (2017)

    CAS  Google Scholar 

  35. 35.

    R.C. Gilson, K.C. Black, D.D. Lane, S. Achilefu, Hybrid TiO2–Ruthenium Nano-photosensitizer Synergistically Produces Reactive Oxygen Species in both Hypoxic and Normoxic Conditions. Angew. Chem. Int. Ed. 56, 10717–10720 (2017)

    CAS  Google Scholar 

  36. 36.

    T. Tong, J. Zhang, B. Tian, F. Chen, D. He, Preparation of Fe3+-doped TiO2 catalysts by controlled hydrolysis of titanium alkoxide and study on their photocatalytic activity for methyl orange degradation. J. Hazard. Mater. 155, 572–579 (2008)

    CAS  PubMed  Google Scholar 

  37. 37.

    I.Y. Skobelev, A.B. Sorokin, K.A. Kovalenko, V.P. Fedin, O.A. Kholdeeva, Solvent-free allylic oxidation of alkenes with O2 mediated by Fe-and Cr-MIL-101. J. Catal. 298, 61–69 (2013)

    CAS  Google Scholar 

  38. 38.

    S. Bauer, C. Serre, T. Devic, P. Horcajada, J. Marrot, G. Ferey, N. Stock, High-throughput assisted rationalization of the formation of metal organic frameworks in the iron (III) aminoterephthalate solvothermal system. Inorg. Chem. 47, 7568–7576 (2008)

    CAS  PubMed  Google Scholar 

  39. 39.

    M. Hartmann, M. Fischer, Amino-functionalized basic catalysts with MIL-101 structure. Microporous Mesoporous Mater. 164, 38–43 (2012)

    CAS  Google Scholar 

  40. 40.

    F. Cui, Q. Deng, L. Sun, Prussian blue modified metal–organic framework MIL-101 (Fe) with intrinsic peroxidase-like catalytic activity as a colorimetric biosensing platform. RSC Adv. 5, 98215–98221 (2015)

    CAS  Google Scholar 

  41. 41.

    J. Tang, M. Yang, M. Yang, J. Wang, W. Dong, G. Wang, Heterogeneous Fe-MIL-101 catalysts for efficient one-pot four-component coupling synthesis of highly substituted pyrroles. New J. Chem. 39, 4919–4923 (2015)

    CAS  Google Scholar 

  42. 42.

    L. He, Y. Dong, Y. Zheng, Q. Jia, S. Shan, Y. Zhang, A novel magnetic MIL-101 (Fe)/TiO2 composite for photo degradation of tetracycline under solar light. J. Hazard. Mater. 361, 85–94 (2019)

    CAS  PubMed  Google Scholar 

  43. 43.

    A. Murashkevich, A. Lavitskaya, T. Barannikova, I. Zharskii, Infrared absorption spectra and structure of TiO2-SiO2 composites. J. Appl. Spectrosc. 75, 730–734 (2008)

    CAS  Google Scholar 

  44. 44.

    T. Bezrodna, G. Puchkovska, V. Shymanovska, J. Baran, H. Ratajczak, IR-analysis of H-bonded H2O on the pure TiO2 surface. J. Mol. Struct. 700, 175–181 (2004)

    CAS  Google Scholar 

  45. 45.

    X. Yue, W. Guo, X. Li, H. Zhou, R. Wang, Core-shell Fe3O4@ MIL-101 (Fe) composites as heterogeneous catalysts of persulfate activation for the removal of Acid Orange 7. Environ. Sci. Pollut. Res. 23, 15218–15226 (2016)

    CAS  Google Scholar 

  46. 46.

    G. Srinivas, W. Travis, J. Ford, H. Wu, Z.-X. Guo, T. Yildirim, Nanoconfined ammonia borane in a flexible metal–organic framework Fe–MIL-53: clean hydrogen release with fast kinetics. J. Mater. Chem. A 1, 4167–4172 (2013)

    CAS  Google Scholar 

  47. 47.

    J.-J. Du, Y.-P. Yuan, J.-X. Sun, F.-M. Peng, X. Jiang, L.-G. Qiu, A.-J. Xie, Y.-H. Shen, J.-F. Zhu, New photocatalysts based on MIL-53 metal–organic frameworks for the decolorization of methylene blue dye. J. Hazard. Mater. 190, 945–951 (2011)

    CAS  PubMed  Google Scholar 

  48. 48.

    H. Lv, H. Zhao, T. Cao, L. Qian, Y. Wang, G. Zhao, Efficient degradation of high concentration azo-dye wastewater by heterogeneous Fenton process with iron-based metal-organic framework. J. Mol. Catal. A 400, 81–89 (2015)

    CAS  Google Scholar 

  49. 49.

    K. Yokota, K. Nakamura, T. Kasuya, S. Tamura, T. Sugimoto, K. Akamatsu, K. Nakao, F. Miyashita, Compositional structure of dual TiNO layers deposited on SUS 304 by an IBAD technique. Surf. Coat. Technol. 158, 568–572 (2002)

    Google Scholar 

  50. 50.

    R. Li, X. Jin, M. Megharaj, R. Naidu, Z. Chen, Heterogeneous Fenton oxidation of 2, 4-dichlorophenol using iron-based nanoparticles and persulfate system. Chem. Eng. J. 264, 587–594 (2015)

    CAS  Google Scholar 

  51. 51.

    S. Wang, N. Zhou, Removal of carbamazepine from aqueous solution using sono-activated persulfate process. Ultrason. Sonochem. 29, 156–162 (2016)

    PubMed  Google Scholar 

  52. 52.

    A.J. Jafari, B. Kakavandi, N. Jaafarzadeh, R.R. Kalantary, M. Ahmadi, A.A. Babaei, Fenton-like catalytic oxidation of tetracycline by AC@ Fe3O4 as a heterogeneous persulfate activator: adsorption and degradation studies. J. Ind. Eng. Chem. 45, 323–333 (2017)

    Google Scholar 

  53. 53.

    I. Arslan-Alaton, G. Tureli, T. Olmez-Hanci, Treatment of azo dye production wastewaters using Photo-Fenton-like advanced oxidation processes: optimization by response surface methodology. J. Photochem. Photobiol., A 202, 142–153 (2009)

    CAS  Google Scholar 

  54. 54.

    A.K. Verma, R.R. Dash, P. Bhunia, A review on chemical coagulation/flocculation technologies for removal of colour from textile wastewaters. J. Environ. Manag. 93, 154–168 (2012)

    CAS  Google Scholar 

  55. 55.

    Y. Su, Z. Wu, Y. Wu, J. Yu, L. Sun, C. Lin, Acid Orange II degradation through a heterogeneous Fenton-like reaction using Fe–TiO2 nanotube arrays as a photocatalyst. J. Mater. Chem. A 3, 8537–8544 (2015)

    CAS  Google Scholar 

  56. 56.

    C. Liang, C.J. Bruell, M.C. Marley, K.L. Sperry, Persulfate oxidation for in situ remediation of TCE. I. Activated by ferrous ion with and without a persulfate–thiosulfate redox couple. Chemosphere 55, 1213–1223 (2004)

    CAS  PubMed  Google Scholar 

  57. 57.

    Y. Ji, Y. Shi, W. Dong, X. Wen, M. Jiang, J. Lu, Thermo-activated persulfate oxidation system for tetracycline antibiotics degradation in aqueous solution. Chem. Eng. J. 298, 225–233 (2016)

    CAS  Google Scholar 

  58. 58.

    S. Nasseri, A.H. Mahvi, M. Seyedsalehi, K. Yaghmaeian, R. Nabizadeh, M. Alimohammadi, G.H. Safari, Degradation kinetics of tetracycline in aqueous solutions using peroxydisulfate activated by ultrasound irradiation: effect of radical scavenger and water matrix. J. Mol. Liq. 241, 704–714 (2017)

    CAS  Google Scholar 

  59. 59.

    M. Liu, L.-A. Hou, Q. Li, X. Hu, S. Yu, Heterogeneous degradation of tetracycline by magnetic Ag/AgCl/modified zeolite X–persulfate system under visible light. RSC Adv. 6, 35216–35227 (2016)

    CAS  Google Scholar 

  60. 60.

    J. Liu, S. Zhong, Y. Song, B. Wang, F. Zhang, Degradation of tetracycline hydrochloride by electro-activated persulfate oxidation. J. Electroanal. Chem. 809, 74–79 (2018)

    CAS  Google Scholar 

  61. 61.

    G.H. Safari, S. Nasseri, A.H. Mahvi, K. Yaghmaeian, R. Nabizadeh, M. Alimohammadi, Optimization of sonochemical degradation of tetracycline in aqueous solution using sono-activated persulfate process. J. Environ. Health Sci. Eng. 13, 76 (2015)

    PubMed  PubMed Central  Google Scholar 

Download references


This work was financially supported by National Natural Science Foundation of China (Grant Nos. 51364023, 21766016 and 21566014) and Talent Reserve Project in Yunnan (Grant No. 2015HB014).

Author information



Corresponding authors

Correspondence to Qingming Jia or Shaoyun Shan.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

He, L., Zhang, Y., Zheng, Y. et al. Degradation of tetracycline by a novel MIL-101(Fe)/TiO2 composite with persulfate. J Porous Mater 26, 1839–1850 (2019).

Download citation


  • MOF
  • Advanced oxidation process
  • TiO2
  • Degradation
  • Tetracycline
  • Catalyst