Preparation of three-dimensional dendritic-like mesoporous silica particles and their pore size-dependent polishing behavior and mechanism


The type and structure of abrasive particles play a key role in the involved friction and wear processes during chemical mechanical polishing (CMP). This work aims to develop silica-based abrasives that improve both surface finish and removal rate. The uniform, three-dimensional, and dendritic-like mesoporous silica (D-mSiO2) spheres with sub-100 nm size were synthesized in a heterogeneous oil–water biphase reaction system. The pore size of 3D-dendritic channels could be adjusted by regulating hydrophobic solvents in the upper oil phase. The improvements of root-mean-square roughness (0.18–0.26 nm) and removal rate (192–260 nm/min) were achieved for the D-mSiO2 particles compared to colloidal silica abrasives (0.37 nm, 112 nm/min). A reduction from 2.90 to 0.48 and 2.60 to 0.42 nm for the maximum asperity height and the maximum valley depth respectively was also observed after CMP with D-mSiO2 abrasives. Furthermore, the D-mSiO2 particles with an enlarged pore size achieved a reduced surface roughness and an enhanced removal rate. The improved polishing performance may be attributed to the enlarged real contact area, the promoted tribo-chemical wear, and the enhanced adhesion effect between particles and surfaces. The contact area mechanism and the contact-penetration-adhesion model may be predominant and significant for D-mSiO2 abrasives, rather than the traditional the indentation-based mechanism and the indentation-sliding model. The unique three-dimensional mesopores of D-mSiO2 abrasives are expected to play key role in material removal processes, and it will have more hopeful prospects in CMP performance improvements.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6


  1. 1.

    H. Chiu, D. Gößl, L. Haddick, H. Engelke, T. Bein, Clickable multifunctional large-pore mesoporous silica nanoparticles as nanocarriers. Chem. Mater. 30, 644–654 (2018)

    CAS  Article  Google Scholar 

  2. 2.

    M. Davidson, Y. Ji, G.J. Leong, N.C. Kovach, B.G. Trewyn, R.M. Richards, Hybrid mesoporous silica/noble-metal nanoparticle materials-synthesis and catalytic applications. ACS Appl. Nano Mater. 1, 4386–4400 (2018)

    CAS  Article  Google Scholar 

  3. 3.

    M. Huang, L. Liu, S. Wang, H. Zhu, D. Wu, Z. Yu, S. Zhou, Dendritic mesoporous silica nanospheres synthesized by a novel dual-templating micelle system for the preparation of functional nanomaterials. Langmuir 33, 519–526 (2017)

    CAS  Article  Google Scholar 

  4. 4.

    D. Yin, X. Niu, K. Zhang, J. Wang, Y. Cui, Preparation of MgO doped colloidal SiO2 abrasive and their chemical mechanical polishing performance on c-, r- and a-plane sapphire substrate. Ceram. Int. 44, 14631–14637 (2018)

    CAS  Article  Google Scholar 

  5. 5.

    Y. Chen, Y.Y. Wang, J.W. Qin, A.L. Chen, Core/shell structured solid-silica/mesoporous-silica microspheres as novel abrasives for chemical mechanical polishing. Tribol. Lett. 58, 37 (2015)

    Article  Google Scholar 

  6. 6.

    D.P. Tan, S.M. Ji, Y.Z. Fu, An improved soft abrasive flow finishing method based on fluid collision theory. Int. J. Mach. Tool Manuf. 85, 1261–1274 (2016)

    Google Scholar 

  7. 7.

    Y.C. Xu, J. Lu, X.P. Xu, Study on planarization machining of sapphire wafer with soft-hard mixed abrasive through mechanical chemical polishing. Appl. Surf. Sci. 389, 713–720 (2016)

    CAS  Article  Google Scholar 

  8. 8.

    A.L. Chen, J.L. Long, Z.F. Li, Y. Chen, Dependency of structural change and polishing efficiency of mesosilica/ceria core/shell composite abrasives on calcination temperatures. J. Mater. Sci. 29, 11466–11477 (2018)

    CAS  Google Scholar 

  9. 9.

    R. Chen, R. Jiang, H. Lei, M. Liang, Material removal mechanism during porous silica cluster impact on crystal silicon substrate studied by molecular dynamics simulation. Appl. Surf. Sci. 264, 148–156 (2013)

    CAS  Article  Google Scholar 

  10. 10.

    Y. Chen, Z.F. Li, J.W. Qin, A.L. Chen, Monodispersed mesoporous silica (mSiO2) spheres as abrasives for improved chemical mechanical planarization performance. J. Mater. Sci. 51, 5811–5822 (2016)

    CAS  Article  Google Scholar 

  11. 11.

    J. Ryu, W. Kim, J. Yun, K. Lee, J. Lee, H. Yu, J.H. Kim, J.J. Kim, J. Jang, Fabrication of uniform wrinkled silica nanoparticles and their application to abrasives in chemical mechanical planarization. ACS Appl. Mater. Interfaces. 10, 11843–11851 (2018)

    CAS  Article  Google Scholar 

  12. 12.

    D. Shen, L. Chen, J. Yang, R. Zhang, Y. Wei, X. Li, W. Li, Z. Sun, H. Zhu, A.M. Abdullah, A. Al-Enizi, A.A. Elzatahry, F. Zhang, D. Zhao, Ultradispersed palladium nanoparticles in three-dimensional dendritic mesoporous silica nanospheres: toward active and stable heterogeneous catalysts. ACS Appl. Mater. Interfaces. 7, 17450–17459 (2015)

    CAS  Article  Google Scholar 

  13. 13.

    X. Xue, W. Lang, X. Yan, Y. Guo, Dispersed vanadium in three-dimensional dendritic mesoporous silica nanospheres: active and stable catalysts for the oxidative dehydrogenation of propane in the presence of CO2. ACS Appl. Mater. Interfaces. 9, 15408–15423 (2017)

    CAS  Article  Google Scholar 

  14. 14.

    X. Du, J. He, Amino-functionalized silica nanoparticles with center-radially hierarchical mesopores as ideal catalyst carriers. Nanoscale 4, 852–859 (2012)

    CAS  Article  Google Scholar 

  15. 15.

    Y. Wang, Y.A. Nor, H. Song, Y.N. Yang, C. Xu, M.H. Yu, C.Z. Yu, Small-sized and large-pore dendritic mesoporous silica nanoparticles enhance antimicrobial enzyme delivery. J. Mater. Chem. B 4, 2646–2653 (2016)

    CAS  Article  Google Scholar 

  16. 16.

    D.P. Wang, H.C. Zeng, Creation of interior space, architecture of shell structure, and encapsulation of functional materials for mesoporous SiO2 spheres. Chem. Mater. 23, 4886–4899 (2011)

    CAS  Article  Google Scholar 

  17. 17.

    L. Ernawati, R. Balgis, T. Ogi, K. Okuyama, Tunable synthesis of mesoporous silica particles with unique radially oriented pore structures from tetramethyl orthosilicate via oil–water emulsion process. Langmuir 33, 783–790 (2017)

    CAS  Article  Google Scholar 

  18. 18.

    Y. Wu, J. Chai, X. Li, B. Yang, S. Shang, J. Lu, Effect of alkane/water ratios on the phase behavior and the solubilization of microemulsion systems containing hexadecyltrimethylammonium bromide. J. Chem. Eng. Data 56, 3089–3094 (2011)

    CAS  Article  Google Scholar 

  19. 19.

    W. Choi, R.K. Singh, Roles of colloidal silicon dioxide particles in chemical mechanical polishing of dielectric silicon dioxide. Jpn. J. Appl. Phys. 44, 8383–8390 (2005)

    CAS  Article  Google Scholar 

  20. 20.

    X. Chen, Y. Zhao, Y. Wang, Modeling the effects of particle deformation in chemical mechanical polishing. Appl. Surf. Sci. 258, 8469–8474 (2012)

    CAS  Article  Google Scholar 

  21. 21.

    Y. Wang, Y. Chen, F. Qi, D. Zhao, W. Liu, A material removal model for silicon oxide layers in chemical mechanical planarization considering the promoted chemical reaction by the down pressure. Tribol. Int. 93, 11–16 (2016)

    CAS  Article  Google Scholar 

  22. 22.

    Z. Lin, R. Wang, S. Ma, Theoretical model and experimental analysis of chemical mechanical polishing with the effect of slurry for abrasive removal depth and surface morphology of silicon wafer. Tribol. Int. 117, 119–130 (2018)

    CAS  Article  Google Scholar 

  23. 23.

    Y.Q. Qi, L. Chen, S.L. Jiang, J.X. Yu, B.J. Yu, C. Xiao, L.M. Qian, Investigation of silicon wear against non-porous and micro-porous SiO2 spheres in water and in humid air. RSC Adv. 6, 89627–89634 (2016)

    CAS  Article  Google Scholar 

  24. 24.

    A. Lu, T. Jin, Q.F. Liu, Z.F. Gun, M.N. Qu, H. Lun, M. Han, Modeling and prediction of surface topography and surface roughness in dual-axis wheel polishing of optical glass. Int. J. Mach. Tool Manuf. 137, 13–29 (2019)

    Article  Google Scholar 

  25. 25.

    Y. Wang, Y. Zhu, D. Zhao, D. Bian, Nanoscratch of aluminum in dry, water and aqueous H2O2 conditions. Appl. Surf. Sci. 464, 229–235 (2019)

    CAS  Article  Google Scholar 

  26. 26.

    Y. Mo, K.T. Turner, I. Szlufarska, Friction laws at the nanoscale. Nature 457, 1116–1119 (2009)

    CAS  Article  Google Scholar 

  27. 27.

    L. Wang, P. Zhou, Y. Yan, B. Zhang, R. Kang, D. Guo, Chemical-mechanical wear of monocrystalline silicon by a single pad asperity. Int. J. Mach. Tool Manuf. 120, 61–71 (2017)

    Article  Google Scholar 

  28. 28.

    R. Chen, Y. Wu, H. Lei, R. Jiang, M. Liang, Study of material removal processes of the crystal silicon substrate covered by an oxide film under a silica cluster impact: molecular dynamics simulation. Appl. Surf. Sci. 305, 609–616 (2014)

    CAS  Article  Google Scholar 

Download references


The project is supported by National Natural Science Foundation of China (Grant Nos. 51405038, 51575058, 51875052), and the Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD).

Author information



Corresponding author

Correspondence to Ailian Chen.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Chen, Y., Ma, X., Cai, W. et al. Preparation of three-dimensional dendritic-like mesoporous silica particles and their pore size-dependent polishing behavior and mechanism. J Porous Mater 26, 1869–1877 (2019).

Download citation


  • Mesoporous silica
  • 3D-dendritic silica
  • Pore size
  • Particle abrasive
  • Chemical mechanical polishing
  • Mechanism