Acoustical characteristics of ultralight polylactic acid foams fabricated via solution phase inversion


The acoustic properties of highly porous polylactic acid (PLA) foams with very low densities (as low as 0.12 g/cm3) are evaluated using an impedance tube. PLA foams with a mesoporous or a combined meso/macroporous morphology exhibiting different mechanical and physical properties, are produced via nonsolvent induced phase separation (NIPS). The resulting foams exhibit an interesting resonance-like acoustic absorption behavior providing the opportunity to design acoustic materials to target specific frequency bands by controlling their microstructure. Despite very low densities, plane wave tube measurements suggest that these PLA foams may have the potential for sound barrier applications. Using the transfer matrix approach on multilayer configurations, we showed that the combined meso/macroporous morphology has the most significant impact on the absorption and transmission capacity of the foams. The knowledge produced from this study helps to understand the correlation between the characteristics of highly porous NIPS-derived foams and their acoustic properties.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8


  1. 1.

    F. Chevillotte, C. Perrot, R. Panneton, J. Acoust. Soc. Am. 128, 1766 (2010)

    Article  Google Scholar 

  2. 2.

    C. Perrot, F. Chevillotte, M. Hoang, G. Bonnet, F.-X. Bécot, L. Gautron et al., J. Appl. Phys. 111, 014911 (2012)

    Article  Google Scholar 

  3. 3.

    L.-P. Lefebvre, J. Banhart, D. Dunand, Adv. Eng. Mater. 10, 775 (2008)

    CAS  Article  Google Scholar 

  4. 4.

    K.M. Nampoothiri, N.R. Nair, R.P. John, Bioresour. Technol. 101, 8493 (2010)

    Article  Google Scholar 

  5. 5.

    E. Rezabeigi, P.M. Wood-Adams, R.A. Drew, Polymer 55, 3100 (2014)

    CAS  Article  Google Scholar 

  6. 6.

    M. Nofar, C.B. Park, Prog. Polym. Sci. 39, 1721 (2014)

    CAS  Article  Google Scholar 

  7. 7.

    S. Griffin, S.A. Lane, S. Huybrechts, J. Vib. Acoust. 123, 11 (2001)

    Article  Google Scholar 

  8. 8.

    V. Tarnow, J. Acoust. Soc. Am. 100, 3706 (1996)

    Article  Google Scholar 

  9. 9.

    J. Allard, N. Atalla, Propagation of Sound in Porous Media: Modelling Sound Absorbing Materials 2e (Wiley, Chichester, 2009)

    Google Scholar 

  10. 10.

    S. Gasser, F. Paun, Y. Bréchet, J. Acoust. Soc. Am. 117, 2090 (2005)

    CAS  Article  Google Scholar 

  11. 11.

    C. Perrot, F. Chevillotte, R. Panneton, J. Appl. Phys. 103, 024909 (2008)

    Article  Google Scholar 

  12. 12.

    R. Venegas, O. Umnova, J. Acoust. Soc. Am. 130, 2765 (2011)

    Article  Google Scholar 

  13. 13.

    X. Olny, C. Boutin, J. Acoust. Soc. Am. 114, 73 (2003)

    Article  Google Scholar 

  14. 14.

    F. Chevillotte, C. Perrot, E. Guillon, J. Acoust. Soc. Am. 134, 4681 (2013)

    Article  Google Scholar 

  15. 15.

    K. Attenborough, Appl. Acoust. 130, 188 (2018)

    Article  Google Scholar 

  16. 16.

    E. Rezabeigi, P.M. Wood-Adams, R.A. Drew, Polymer 55, 6743 (2014)

    CAS  Article  Google Scholar 

  17. 17.

    M. Di Luccio, R. Nobrega, C. Borges, Polymer 41, 4309 (2000)

    Article  Google Scholar 

  18. 18.

    E. Rezabeigi, R.A. Drew, P.M. Wood-Adams, Ind. Eng. Chem. Res. 56, 11451 (2017)

    CAS  Article  Google Scholar 

  19. 19.

    E.R. Fotsing, E. Rezabeigi, A. Dubourg, A. Ross, P.M. Woods-Adams, R.A.L. Drew, Acoustic properties of porous PLA monoliths produced via nonsolvent induced phase separation, in 24th International Congress of Theoretical and Applied Mechanics (ICTAM), Montreal, QC, Canada, 21–26 August, 2016

  20. 20.

    D. Lee, Y. Kwon, J. Sound Vib. 278, 847 (2004)

    Article  Google Scholar 

  21. 21.

    E. Rezabeigi, P.M. Wood-Adams, R.A. Drew, J. Polym. Sci. Part B 55, 1055 (2017)

    CAS  Article  Google Scholar 

  22. 22.

    ASTM, 1050-12, Standard, American Society for Testing and Materials (2012)

  23. 23.

    ASTM, E2611-09, Standard, American Society for Testing and Materials (2009)

  24. 24.

    C.-M. Lee, Y. Xu, J. Sound Vib. 326, 290 (2009)

    Article  Google Scholar 

  25. 25.

    R. Dragonetti, C. Ianniello, R.A. Romano, J. Acoust. Soc. Am. 129, 753 (2011)

    Article  Google Scholar 

  26. 26.

    F.J. Hua, T.G. Park, D.S. Lee, Polymer 44, 1911 (2003)

    CAS  Article  Google Scholar 

  27. 27.

    K. Ishizaki, S. Komarneni, M. Nanko, Porous Materials: Process Technology and Applications, vol. 4 (Springer, Boston, 2013)

    Google Scholar 

  28. 28.

    D. Jahani, A. Ameli, P. Jung, M. Barzegari, C. Park, H. Naguib, Mater. Des. 53, 20 (2014)

    CAS  Article  Google Scholar 

  29. 29.

    E. Lind-Nordgren, P. Göransson, J. Sound Vib. 329, 753 (2010)

    Article  Google Scholar 

  30. 30.

    F. Sgard, N. Atalla, C. Amedin, Acta Acust. United Acust. 93, 106 (2007)

    Google Scholar 

  31. 31.

    S.M. Hasheminejad, Int. J. Solids Struct. 35, 129 (1998)

    Article  Google Scholar 

  32. 32.

    L. Jaouen, F.-X. Bécot, J. Acoust. Soc. Am. 129, 1400 (2011)

    CAS  Article  Google Scholar 

  33. 33.

    A. Peiffer, M. Grünewald, P. Lempereur, Appl. Phys. Lett. 107, 216101 (2015)

    Article  Google Scholar 

  34. 34.

    D. Griese, J.D. Summers, L. Thompson, J. Vib. Acoust. 137(2), 021011 (2014)

    Google Scholar 

  35. 35.

    Y. Salissou, R. Panneton, O. Doutres, J. Acous. Soc. Am. 131, El216 (2012)

    Article  Google Scholar 

Download references


Funding provided by the Natural Sciences and Engineering Research Council of Canada (NSERC), École Polytechnique, and Concordia University. The authors wish to thank Arnaud Dubourg for initiating the project and for doing some of the preliminary measurements. Also, the authors are thankful to the anonymous reviewers for the very constructive comments and suggestions.

Author information



Corresponding author

Correspondence to Ehsan Rezabeigi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 39 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Fotsing, E.R., Rezabeigi, E., Ross, A. et al. Acoustical characteristics of ultralight polylactic acid foams fabricated via solution phase inversion. J Porous Mater 26, 1781–1794 (2019).

Download citation


  • Foams
  • Microstructure
  • Phase separation
  • Absorption
  • Impedance
  • Transmission