A review on the taxonomy, factors associated with sound absorption and theoretical modeling of porous sound absorbing materials

Abstract

The sound is the pressure disturbance created over air particles above and below atmospheric pressure. It is a mechanical wave which requires a medium to propagate. The sound can generate from a source, then travels through a medium and finally is received by the receiver. The noise is an unpleasant or unwanted sound that is undesired by the receiver. This unwanted sound is absorbed by the sound absorbing (SA) materials. This paper presents a complete comprehensive literature survey for the SA materials and organized the information in the following manner. First, the phenomenon behind SA mechanism is being explained, then the detailed information of existing SA materials with their classification is reported. After that, the factors associated with the sound absorption that influences the sound absorption coefficient (SAC) is being presented. Finally, the theoretical models for porous materials are being discussed followed by the details of price comparison of natural and synthetic fiber-based sound absorbers and the applications of SA materials of various acoustical products. There are a lot of researches going on to develop new acoustic materials and hence this paper will help the researchers to know about the existing SA materials and also help them to develop new acoustic materials by considering significant information related to sound absorption.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22

References

  1. 1.

    J. Burg, J. Romney, E. Schwartz, Digital Sound & Music: Concepts, Applications, & Science (Franklin, Beedle & Associates Incorporated Portland, 2016)

    Google Scholar 

  2. 2.

    D.R. Raichel, The Science and Applications of Acoustics, 2nd edn. (AIP Press, College Park, 2000), p. 13

    Google Scholar 

  3. 3.

    S.V. Vaseghi, Advanced Digital Signal Processing and Noise Reduction, 2nd edn. (Wiley, New York, 2006), p. 29

    Google Scholar 

  4. 4.

    P.A. Savale, J. Environ. Res. Dev. 8, 1026–1036 (2014)

    Google Scholar 

  5. 5.

    S.N.Y. Gerges, G.A. Sehrndt, W. Parthey, Noise sources. http://www.who.int/occupational_health/publications/noise5.pdf. Accessed 16 Aug 2018

  6. 6.

    C.H. Hansen, Fundamentals of acoustics. http://www.who.int/occupational_health/publications/noise1.pdf. Accessed 16 Aug 2018

  7. 7.

    A.E. Gonzalez, What does “Noise Pollution” mean? J. Environ. Prot. 5, 340 (2014). https://doi.org/10.4236/jep.2014.54037

    Article  Google Scholar 

  8. 8.

    P.R. Puranik, R.R. Parmar, P.P. Rana, Nonwoven acoustic textiles—a review. Int. J. Adv. Res. Eng. Technol. 5(3), 81–88 (2014)

    Google Scholar 

  9. 9.

    H. Memon, Z.A. Abro, A. Ahmed, N.A. Khoso, Considerations while designing acoustic home textiles: a review. J. Text. Appar. Technol. Manag. 9(3), 1–29 (2015)

    Google Scholar 

  10. 10.

    F. Asdrubali, S. Schiavoni, K.V. Horoshenkov, A review of sustainable materials for acoustic applications. Build. Acoust. 19(4), 283–312 (2012)

    Google Scholar 

  11. 11.

    M.R.G. Ravandi, H. Mardi, A.A.A. Langari, M. Mohammadian, N. Khanjani, A review on the acoustical properties of natural and synthetic noise absorbents. OALibJ (2015). https://doi.org/10.4236/oalib.1101598

    Article  Google Scholar 

  12. 12.

    M.N. Yahya, D.D.V.S. Chin, A review on the potential of natural fibre for sound absorption application. IOP Conf. Ser. (2017). https://doi.org/10.1088/1757-899x/226/1/012014

    Article  Google Scholar 

  13. 13.

    X. Sagartzazua, L. Hervellab, J.M. Pagaldaya, Review in sound absorbing materials. Arch. Comput. Methods Eng. 15(3), 311–342 (2007)

    Google Scholar 

  14. 14.

    L. Egab, X. Wang, M. Fard, Acoustical characterisation of porous sound absorbing materials: a review. Vehic. Noise Vib. 10, 129–149 (2014)

    Google Scholar 

  15. 15.

    M. Ayub, A.C. Zander, C.Q. Howard, B.S. Cazzolato, A review of acoustic absorption mechanisms of nanoscopic fibres. Proc Acoust. 1–8 (2011)

  16. 16.

    M.A. Kuczmarski, J.C. Johnston, Acoustic absorption in porous materials. Nasa/Tm—2011-216995 (2011)

  17. 17.

    H. Jie, J. Sheng, Y. Xiong, Sound absorption properties of single-hole hollow polyester fibre reinforced hydrogenated carboxyl nitrile rubber composites. AUTEX Res. J. 17, 263–267 (2016). https://doi.org/10.1515/aut-2016-0014

    CAS  Article  Google Scholar 

  18. 18.

    M.M. Jalili, S.Y. Mousavi, A.S. Pirayeshfar, Investigating the acoustical properties of carbon fibre-, glass fibre-, and hemp fibre-reinforced polyester composites. Polym. Compos. 35, 2103–2111 (2014). https://doi.org/10.1002/pc.22872

    CAS  Article  Google Scholar 

  19. 19.

    L. Chen, Z. Chen, X. Zhang, W. Wang, Sound insulation property study on nylon 66 scrim reinforced PVF laminated membranes and their composite sound proof structure. IOP Conf. Ser. (2018). https://doi.org/10.1088/1755-1315/108/2/022029

    Article  Google Scholar 

  20. 20.

    H. Liu, B. Zuo, Structure and sound absorption properties of spiral vane electrospun PVA/PEO nanofiber membranes. Appl. Sci. 8, 296 (2018). https://doi.org/10.3390/app8020296www.mdpi.com/journal/applsci

    Article  Google Scholar 

  21. 21.

    Z. Liu, J. Zhan, M. Fard, J.L. Davy, Acoustic properties of a porous polycarbonate material produced by additive manufacturing. Mater. Lett. 181, 296–299 (2016). https://doi.org/10.1016/j.matlet.2016.06.045

    CAS  Article  Google Scholar 

  22. 22.

    S. Ersoy, E. Ulug, M. Tasdemir, Sound adsorption and morphological properties of SIS/HIPS/CaCO3 polymer composites. J. Polym. Mater. 28(2), 551–560 (2011)

    CAS  Google Scholar 

  23. 23.

    H.A. Latif, M.N. Yahya, M.N. Rafiq, M. Sambu, M.I. Ghazali, M.N.M. Hatta, A preliminary study on acoustical performance of oil palm mesocarp natural fibre. Appl. Mech. Mater. 773, 247–252 (2015)

    Google Scholar 

  24. 24.

    V.E. Egorova, R.R. Habibova, L.N. Shafigullin, Study of sound-absorbing properties of glass-fibre reinforced materials used in engineering. IOP Conf. Seri. 701, 53–58 (2017). https://doi.org/10.1088/1757-899x/240/1/012012

    Article  Google Scholar 

  25. 25.

    M. Kumar, R. Kaur, Glass fibre reinforced rigid polyurethane foam: synthesis and characterization. Polymers 17, 517–521 (2017). https://doi.org/10.1515/epoly-2017-0072

    CAS  Article  Google Scholar 

  26. 26.

    J.H. Lin, C.H. Huang, Y.C. Chuang, C.W. Lou, Preparation and sound absorption evaluation of PET/Kevlar/PU foam composite boards. Adv. Mater. Res. 910, 222–225 (2014). https://doi.org/10.4028/www.scientific.net/AMR.910.222

    Article  Google Scholar 

  27. 27.

    A.E. Tiuc, H. Vermeşan, T. Gabor, O. Vasile, Improved sound absorption properties of polyurethane foam mixed with textile waste. Energy Proc. 85, 559–565 (2016). https://doi.org/10.1016/j.egypro.2015.12.245

    CAS  Article  Google Scholar 

  28. 28.

    R. Rey, J. Alba, J.P. Arenas, V. Sanchis, Sound absorbing materials made of recycled polyurethane foam. Inter. Noise (2011)

  29. 29.

    T. Yamashita, K. Suzuki, H. Adachi, S. Nishino, Y. Tomota, Effect of microscopic internal structure on sound absorption properties of polyurethane foam by X-ray computed tomography observations. Mater. Trans. 50, 373–380 (2009). https://doi.org/10.2320/matertrans.MRA2008207

    CAS  Article  Google Scholar 

  30. 30.

    A.E. Tiuc, O. Vasile, A.D. Usca, T. Gabor, H. Vermesan, The analysis of factors that influence the sound absorption coefficient of porous materials. RJAV. 11(2), 105–108 (2014)

    Google Scholar 

  31. 31.

    W.A. Orfali, Acoustic properties of polyurethane composition reinforced with carbon nanotubes and silicon oxide nano-powder. Phys. Proc. 70, 699–702 (2015). https://doi.org/10.1016/j.phpro.2015.08.091

    CAS  Article  Google Scholar 

  32. 32.

    A. Byakova, S. Gnyloskurenko, Y. Bezimyanniy, T. Nakamura, Closed-cell aluminum foam of improved sound absorption ability: manufacture and properties. Metals 4, 445–454 (2014). https://doi.org/10.3390/met4030445

    CAS  Article  Google Scholar 

  33. 33.

    Y. Li, Z. Li, F. Han, Air flow resistance and sound absorption behavior of open-celled aluminum foams with spherical cells. Proc. Mater. Sci. 4, 197–200 (2014). https://doi.org/10.1016/j.mspro.2014.07.591

    CAS  Article  Google Scholar 

  34. 34.

    W. Fang, W. Lu-cai, W. Jian-guo, Y. Xiao-hong, Sound absorption property of open pore aluminum foams. China Foundry. 4(1), 31–33 (2007)

    Google Scholar 

  35. 35.

    Y. Ren, Z. Li, F. Han, Synthesis of Co3O4 micro-needles on the cell walls and their effect on the sound absorption behavior of open cell Al foam. Proc. Mater. Sci. 4, 191–195 (2014). https://doi.org/10.1016/j.mspro.2014.07.593

    CAS  Article  Google Scholar 

  36. 36.

    T.J. Lu, F. Chen, D. He, Sound absorption of cellular metals with semiopen cells. J. Acoust. Soc. Am. 108(4), 1697–1709 (2000)

    CAS  PubMed  Google Scholar 

  37. 37.

    W. Jin, J. Liu, Z. Wang, Y. Wang, Z. Cao, Y. Liu, X. Zhu, Sound absorption characteristics of aluminum foams treated by plasma electrolytic oxidation. Materials 8, 7511–7518 (2015). https://doi.org/10.3390/ma8115395

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  38. 38.

    P.S. Liu, H.B. Qing, H.L. Hou, Primary investigation on sound absorption performance of highly porous titanium foams. Mater. Des. 85, 275–281 (2015). https://doi.org/10.1016/j.matdes.2015.06.118

    CAS  Article  Google Scholar 

  39. 39.

    X. Zhengping, Z. Jilei, T. Huiping, A. Qingbo, Z. Hao, W. Jianyong, L. Cheng, Progress of application researches of porous fiber metals. Materials 4, 816–824 (2011). https://doi.org/10.3390/ma4040816

    Article  Google Scholar 

  40. 40.

    Z. Bo, C. Tianning, Calculation of sound absorption characteristics of porous sintered fiber metal. Appl. Acoust. 70, 337–346 (2009)

    Google Scholar 

  41. 41.

    N. Lippitz, J. Rosler, B. Hinze, Potential of metal fibre felts as passive absorbers in absorption silencers. Metals 5, 150–158 (2013). https://doi.org/10.3390/met3010150

    CAS  Article  Google Scholar 

  42. 42.

    A. Qingbo, W. Jianzhong, T. Huiping, Z. Hao, M. Jun, B. Tengfei, Sound absorption characteristics and structure optimization of porous metal fibrous materials. Rare Met. Mater. Eng. 44, 2646–2650 (2015). https://doi.org/10.1016/s1875-5372(16)60011-5

    Article  Google Scholar 

  43. 43.

    W. Chen, S. Liu, L. Tong, S. Li, Design of multi-layered porous fibrous metals for optimal sound absorption in the low frequency range. Theor. Appl. Mech. Lett. 6, 42–48 (2016). https://doi.org/10.1016/j.taml.2015.12.002

    Article  Google Scholar 

  44. 44.

    Z. Jilei, S. Jun, T. Huiping, W. Jianzhong, A. Qingbo, B. Tengfei, S. Weidong, Gradient-structural optimization of metal fiber porous materials for sound absorption. Powder Technol. 301, 1235–1241 (2016)

    Google Scholar 

  45. 45.

    Y. Yang, B. Li, Z. Chen, N. Sui, Z. Chen, T. Xu, Y. Li, R. Fu, Y. Jing, Sound insulation of multi-layer glass-fiber felts: Role of morphology. Text. Res. J. 87, 261–269 (2016). https://doi.org/10.1177/0040517516629142

    CAS  Article  Google Scholar 

  46. 46.

    C. Zhao, P. Wang, L. Wang, D. Liu, Reducing railway noise with porous sound-absorbing concrete slabs. Adv. Mater. Sci. Eng. 1, 1–10 (2014). https://doi.org/10.1155/2014/206549

    Article  Google Scholar 

  47. 47.

    Z.A. Krezel, K. McManus, Environmentally friendly sound absorbing noise barrier made from concrete waste—further developments. Int. J. Pavement. Res. Technol. 3, 223–227 (2010)

    Google Scholar 

  48. 48.

    P. Sun, Z. Guo, Sintering preparation of porous sound-absorbing materials from steel slag. Trans. Nonferrous. Met. Soc. China 25, 2230–2240 (2015). https://doi.org/10.1016/s1003-6326(15)63865-1

    CAS  Article  Google Scholar 

  49. 49.

    M. Bratu, I. Ropota, O. Vasile, O. Dumitrescu, M. Muntean, Sound-absorbing properties of composite materials reinforced with various wastes. Environ. Eng. Manag. J. 10(8), 1047–1051 (2011)

    Google Scholar 

  50. 50.

    M. Bratu, O. Dumitrescu, O. Vasile, A. Constantin, M. Muntean, Research on the sound-absorbing properties of new composite materials with some wastes. Rev. Rom. Mater. 44(2), 160–168 (2014)

    CAS  Google Scholar 

  51. 51.

    U.E. Asuquo, E.O. Obisung, F.O. Faithpraise, Sound absorbing properties of different density local acoustic materials. Educ. Res. 1(2), 039–041 (2010)

    Google Scholar 

  52. 52.

    E. Julia, J. Segura, A. Nadal, J.M. Gadea, J.E. Crespo, Study of sound absorption properties of multilayer panels made from ground tyre rubbers. Fascicle Manag. Technol. Eng. 1, 147–150 (2013)

    Google Scholar 

  53. 53.

    X. Colom, J. Canavate, F. Carrillo, M.J. Lis, Acoustic and mechanical properties of recycled polyvinyl chloride/ground tyre rubber composites. J. Compos. Mater. 9, 1061–1069 (2014). https://doi.org/10.1177/0021998313482154

    Article  Google Scholar 

  54. 54.

    E. Knapen, R. Lanoye, G. Vermeir, W. Lauriks, D. Van Gemert, Sound absorption by polymer-modified porous cement mortars. In 6th International Conference on Materials Science and Restoration. Aedificatio Publishers (2003)

  55. 55.

    Y. Lee, C. Joo, Sound absorption properties of recycled polyester fibrous assembly absorbers. AUTEX Res. J. 3(2), 78–84 (2003)

    Google Scholar 

  56. 56.

    H.S. Seddeq, N.M. Aly, A. Marwa, M.H. Elshakankery, Investigation on sound absorption properties for recycled fibrous materials. J. Ind. Text. 43, 56–73 (2012). https://doi.org/10.1177/1528083712446956

    Article  Google Scholar 

  57. 57.

    S. Djoumaliisky, Y. Ivanova, G. Kotzev, I. Borovansk, T. Tsolov, Multilayered sound absorbing panels based on waste materials In the 23rd International Conference Technomer, 14–15, Nov 2013

  58. 58.

    I. Iasnicu, O. Vasile, R. Iatan, The analysis of sound absorbing performances for composite plates containing recycled textile wastes. U.P.B. Sci. Bull. 78(1), 213–220 (2016)

    Google Scholar 

  59. 59.

    M. Kucuk, Y. Korkmaz, The effect of physical parameters on sound absorption properties of natural fiber mixed nonwoven composites. Text. Res. J. 82, 2043–2053 (2012). https://doi.org/10.1177/0040517512441987

    CAS  Article  Google Scholar 

  60. 60.

    Y. Na, G. Cho, Sound absorption and viscoelastic property of acoustical automotive nonwovens and their plasma treatment. Fiber Polym. 11, 782–789 (2010). https://doi.org/10.1007/s12221-010-0782-5

    CAS  Article  Google Scholar 

  61. 61.

    B. Algaily, S. Puttajukr, T. Navarat, Acoustic absorption, rheological and mechanical characteristics of waste egg boxes fibers filled SBR. J Teknol. (2015). https://doi.org/10.11113/jt.v77.3800

  62. 62.

    X. Jiang, B. Liang, R.Q. Li, X. Zou, L. Yin, J. Cheng, Ultra-broadband absorption by acoustic metamaterials. Appl. Phys. Lett. (2014). https://doi.org/10.1063/1.4904887

    Article  PubMed  PubMed Central  Google Scholar 

  63. 63.

    V.L. Chrisler, Effect of paint on the sound absorption of acoustic materials. J. Acoust. Soc. Am. 12, 465 (1941). https://doi.org/10.1121/1.1902192

    Article  Google Scholar 

  64. 64.

    O. Doutres, N. Atalla, M. Brouillette, C. Hebert, Using shock waves to improve the sound absorbing efficiency of closed-cell foams. Appl. Acoust. 79, 110–116 (2014)

    Google Scholar 

  65. 65.

    X. Zhu, B.J. Kim, Q. Wang, Q. Wu, Recent advances in the sound insulation properties of bio-based materials. Bioresources 9, 1764–1786 (2013). https://doi.org/10.15376/biores.9.1.1764-1786

    Article  Google Scholar 

  66. 66.

    C. Wassilieff, Sound absorption of wood-based materials. Appl. Acoust. 48(4), 339–356 (1996)

    Google Scholar 

  67. 67.

    V. Bucur, Acoustics of wood. In the 13th International Congress on Sound and Vibration ICSV13, Vienna Austria, 2–6, July 2006

  68. 68.

    L. Peng, B. Song, J. Wang, D. Wang, Mechanic and acoustic properties of the sound-absorbing material made from natural fiber and polyester. Adv. Mater. Sci. Eng. (2015). https://doi.org/10.1155/2015/274913

    Article  Google Scholar 

  69. 69.

    J. Kudela, M. Kunstar, Physical-acoustical characteristics of maple wood with wavy structure. Ann. WULS-SGGW For. Wood Technol. 18(75), 12–18 (2011)

    Google Scholar 

  70. 70.

    G. Iannace, U. Berardi, Characterization of natural fibers for sound absorption. In the 22nd International Congress on Sound and Vibration ICSV22, Florence, Italy, 12–16 July 2015

  71. 71.

    U. Berardi, G. Iannace, Acoustic characterization of natural fibers for sound absorption applications. Build. Environ. 94, 840–852 (2015). https://doi.org/10.1016/j.buildenv.2015.05.029

    Article  Google Scholar 

  72. 72.

    M.J.M. Nor, N. Jamaludin, F.M. Tamiri, A preliminary study of sound absorption using multi-layer coconut coir fibers. Electr. J. Tech. Acous. 3, 1–8 (2004)

    Google Scholar 

  73. 73.

    A. Shiney, B. Premlet, Green building materials for acoustics of an auditorium—a case study. Int. J. Eng. Sci. Invent. 4(3), 70–76 (2015)

    Google Scholar 

  74. 74.

    M.H. Fouladi, M. Ayub, M.J.M. Nor, Analysis of coir fiber acoustical characteristics. Appl. Acoust. 72, 35–42 (2011). https://doi.org/10.1016/j.apacoust.2010.09.007

    Article  Google Scholar 

  75. 75.

    L.Z. Ying, A. Putra, M.J.M. Nor, N. Muhammad, M.Y. Yaakob, Sound absorption of multilayer natural coir and kenaf fibers. In the 23rd International Congress on Sound and Vibration ICSV 23, Athens, Greece, 10–14 July 2016

  76. 76.

    M. Ayub, M.J.M. Nor, N. Amin, R. Zulkifli, M.H. Fouladi, A.R. Ismail, Analysis on sound absorption of natural coir fiber using Delany-Bazley model. In Proceedings of the 8th International Conference on Mechanical Engineering, Dhaka Bangladesh, 26–28 December 2009

  77. 77.

    M.H. Fouladi, S.N. Namasivayam, C.C. Hwa, P.Z. Xin, S. Yeng, P. Xin, M. Ghassem, H.S. Najafabadi, Enhancement of coir fiber fire retardant property. J. Eng. Sci. Technol. 5, 61–72 (2015)

    Google Scholar 

  78. 78.

    W.O. Ogunbowale, P. Banks-Iee, K.A. Bello, S. Maiwada, E.G. Kolawole, Acoustical absorptive properties of cotton, polylactic acid batts and fabrics. Am. Int. J. Contemp. Res. 2(11), 106–114 (2012)

    Google Scholar 

  79. 79.

    H. Hasani, M. Zarrebini, M. Zare, S. Hassanzadeh, Evaluating the acoustic properties of Estabragh (milkweed)/hollow-polyester nonwovens for automotive applications. J. Text. Sci. Eng. 4, 1–6 (2014). https://doi.org/10.4172/2165-8064.1000157

    CAS  Article  Google Scholar 

  80. 80.

    B. Ekici, A. Kentli, H. Kucuk, Improving sound absorption property of polyurethane foams by adding tea-leaf fibers. Arch. Acoust. 37, 515–520 (2012). https://doi.org/10.2478/v10168-012-0052-1

    Article  Google Scholar 

  81. 81.

    H. Koruk, G. Genc, Investigation of the acoustic properties of bio luffa fiber and composite materials. Mater. Lett. 157, 166–168 (2015). https://doi.org/10.1016/j.matlet.2015.05.071

    CAS  Article  Google Scholar 

  82. 82.

    G. Genc, H. Koruk, Investigation of the vibro-acoustic behaviors of luffa bio composites and assessment of their use for practical applications. In the 23rd International Congress on Sound and Vibration ICSV23, Athens, Greece, 10–14, July 2016

  83. 83.

    A.R. Mohanty, S. Fatima, Noise control using green materials. Sound Vib. 49, 13–15 (2015)

    Google Scholar 

  84. 84.

    P.V. Bansod, T. Mittal, A.R. Mohanty, Study on the acoustical properties of natural jute material by theoretical and experimental methods for building acoustics applications. Acoust. Aust. 44, 457–472 (2016). https://doi.org/10.1007/s40857-016-0073-4

    Article  Google Scholar 

  85. 85.

    S. Fatima, A.R. Mohanty, Acoustical and fire-retardant properties of jute composite materials. Appl. Acoust. 72, 108–114 (2011). https://doi.org/10.1016/j.apacoust.2010.10.005

    Article  Google Scholar 

  86. 86.

    G. Thilagavathi, E. Pradeep, T. Kannaian, L. Sasikala, Development of natural fiber nonwovens for application as car interiors for noise control. J. Ind. Text. 3, 267–278 (2010). https://doi.org/10.1177/1528083709347124

    CAS  Article  Google Scholar 

  87. 87.

    D.V. Parikh, Y. Chen, L. Sun, Reducing automotive interior noise with natural fiber nonwoven floor covering systems. Text. Res. J. 76, 813–820 (2006). https://doi.org/10.1177/0040517506063393

    CAS  Article  Google Scholar 

  88. 88.

    S. Prabhakaran, V. Krishnaraj, M. Senthil kumar, R. Zitoune, Sound and vibration damping properties of flax fiber reinforced composites. Proc. Eng. 97, 573–581 (2014). https://doi.org/10.1016/j.proeng.2014.12.285

    CAS  Article  Google Scholar 

  89. 89.

    Z.Y. Lim, A. Putra, M.J.M. Nor, M.Y. Yaakob, Preliminary study on sound absorption of natural kenaf fiber. Proc. Mech. Eng. Res. Day. 95–96 (2015)

  90. 90.

    M. Sambu, M.N. Yahya, H.A. Latif, M.N.M. Hatta, M.I.B. Ghazali, Preliminary study on acoustical and physical charachteristics of kenaf (hibiscus cannabinus) using natural rubber as binder. ARPN J. Eng. Appl. Sci. 11(4), 2468–2474 (2016)

    Google Scholar 

  91. 91.

    O. Kinnane, A. Reilly, J. Grimes, S. Pavia, R. Walker, Acoustic absorption of hemp-lime construction. Constr. Build. Mater. 122, 674–682 (2016). https://doi.org/10.1016/j.conbuildmat.2016.06.106

    CAS  Article  Google Scholar 

  92. 92.

    L.P. Bastos, G.D. Silva, V.D. Melo, N.S. Soeiro, Panels manufactured from vegetable fibers: an alternative approach for controlling noises in indoor environments. Adv. Acoust. Vib. (2012). https://doi.org/10.1155/2012/698737

    Article  Google Scholar 

  93. 93.

    S. Saadon, A.Z.M. Rus, Utilization of oil palm trunk (Elaeis Guineensis) as foam composite for sound absorption, J. Teknol. (2015). https://doi.org/10.11113/jt.v77.6988

  94. 94.

    A. Trematerra, M. Antonio, G. Iannace, Use of green material for acoustic correction inside rooms. J. Sustain. Archit. Civ. Eng. 3, 33–38 (2013). https://doi.org/10.5755/j01.sace.3.4

    Article  Google Scholar 

  95. 95.

    T. Koizumi, N. Tsujiuchi, A. Adachi, in High Performance Structures and Composites, ed. by C.A. Brebbia, W.P. de Wilde (WIT Press, Southampton 2002), pp. 157–166

  96. 96.

    A. Putra, F.A. Khair, M.J.M. Nor, Utilizing hollow-structured bamboo as natural sound absorber. Arch. Acoust. 40, 601–608 (2015). https://doi.org/10.1515/aoa-2015-0060

    Article  Google Scholar 

  97. 97.

    S. Mahzan, A.M. Ahmad Zaidi, M.I. Ghazali, M.N. Yahya, M. Ismail, Investigation on sound absorption of rice-husk reinforced composite. In Proceedings of MUCEET, pp. 19–22 (2009)

  98. 98.

    Y. Wang, C. Zhang, L. Ren, M. Ichchou, M. Galland, O. Bareille, Influences of rice hull in polyurethane foam on its sound absorption characteristics. Polym. Compos. 34, 1847–1855 (2013). https://doi.org/10.1002/pc.22590

    CAS  Article  Google Scholar 

  99. 99.

    A.B. Tiuc, T. Rusu, O. Vasile, Investigation composite materials for its sound absorption properties. RJAV 9(2), 123–126 (2012)

    Google Scholar 

  100. 100.

    A. Tiuc, T. Rusu, S. Ionescu, M. Cretu, A. Ionescu, Acoustical materials—sound absorbing materials made of pine sawdust. RJAV VIII(2), 95–98 (2011)

    Google Scholar 

  101. 101.

    S.T.M. Carvalho, L.M. Mendesa, A.A.S. Cesar, J.B. Florez, F.A. Mori, Acoustic characterization of sugarcane bagasse particleboard panels (Saccharum Officinarum L). Mater. Res. 18, 821–827 (2015). https://doi.org/10.1590/1516-1439.010515

    CAS  Article  Google Scholar 

  102. 102.

    C. Othmani, M. Taktak, A. Zein, T. Hentati, T. Elnady, T. Fakhfakh, M. Haddar, Experimental and theoretical investigation of the acoustic performance of sugarcane wastes based material. Appl. Acoust. 109, 90–96 (2016)

    Google Scholar 

  103. 103.

    I. Suhawati, K. Shamsul, I. Ismaliza, A.M. Kamarudin, Sound absorption analysis of foamed rubber composites from kenaf and calcium carbonate. J. Rubber Res. 16, 36–44 (2013)

    CAS  Google Scholar 

  104. 104.

    H. Mamtaz, M.H. Fouladi, M. Al-Atabi, S.N. Namasivayam, Acoustic absorption of natural fiber composites. J. Eng. 1, 1–10 (2016). https://doi.org/10.1155/2016/5836107

    CAS  Article  Google Scholar 

  105. 105.

    M. Fukuhara, Acoustic characteristics of botanical leaves using ultrasonic transmission waves. Plant Sci. 162, 521–528 (2002). https://doi.org/10.1016/S0168-9452(01)00600-8

    CAS  Article  Google Scholar 

  106. 106.

    M. Connelly, M. Hodgson, Experimental investigation of the sound absorption characteristics of vegetated roofs. Build. Environ. 92, 335–346 (2015). https://doi.org/10.1016/j.buildenv.2015.04.023

    Article  Google Scholar 

  107. 107.

    F. D’Alessandro, F. Asdrubali, N. Mencarelli, Experimental evaluation and modelling of the sound absorption properties of plants for indoor acoustic applications. Build. Environ. 91, 913–923 (2015). https://doi.org/10.1016/j.buildenv.2015.06.004

    Article  Google Scholar 

  108. 108.

    M. Agata, H. Kowalska, S. Pasik, Mechanical and acoustic properties of dried apples. J. Fruit Ornam. Plant Res. 17(2), 127–137 (2009)

    Google Scholar 

  109. 109.

    U. Berardi, G. Iannace, M.D. Gabriele, Characterization of sheep wool panels for room acoustic applications. Proc. Meet. Acoust. (2016). https://doi.org/10.1121/2.0000336

    Article  PubMed  PubMed Central  Google Scholar 

  110. 110.

    Synthetic Polymer Fibers, Polymer Properties Database. http://polymerdatabase.com/Fibers/Fibers.html. (2018). Accessed 04 Aug 2018

  111. 111.

    Advanced composite materials-FAA. https://www.faa.gov/regulations_policies/handbooks_manuals/aircraft/amt_airframe_handbook/media/ama_Ch07.pdf. Accessed 16 Aug 2018

  112. 112.

    M. Miniaci, A. Krushynska, A.B. Movchan, F. Bosia, N.M. Pugno, Spider web-inspired acoustic metamaterials. Appl. Phys. Lett. (2016). https://doi.org/10.1063/1.4961307

    Article  Google Scholar 

  113. 113.

    J.P. Arenas, M.J. Crocker, Recent trends in porous sound-absorbing materials. Sound Vib. 12–17 (2010)

  114. 114.

    G. Stephani, O. Andersen, P. Quadbeck, B. Kieback, Cellular metals for functional applications—an overview. PM2010 World Congress-Foams and Porous Materials. (2010)

  115. 115.

    T. Zhao, M. Yang, H. Wu, S. Guo, X. Sun, W. Liang, Preparation of a new foam/film structure poly(ethylene-co-octene) foam materials and its sound absorption properties. Mater. Lett. 139, 275–278 (2015). https://doi.org/10.1016/j.matlet.2014.10.061

    CAS  Article  Google Scholar 

  116. 116.

    J. Sikora, J. Turkiewicz, Sound absorption coefficients of granular materials. Mech. Control. 29, 149–157 (2010)

    Google Scholar 

  117. 117.

    F.G. Cuevas, J.M. Montes, J. Cintas, P. Urban, Electrical conductivity and porosity relationship in metal foams. J. Porous. Mater. 16, 675 (2009). https://doi.org/10.1007/s10934-008-9248-1

    CAS  Article  Google Scholar 

  118. 118.

    S. Singh, N. Bhatnagar, A survey of fabrication and application of metallic foams (1925–2017). J. Porous. Mater. 25, 537–554 (2017). https://doi.org/10.1007/s10934-017-0467-1

    Article  Google Scholar 

  119. 119.

    G.L. Hao, F.S. Han, W.D. Li, Processing and mechanical properties of magnesium foams. J. Porous. Mater. 16, 251–256 (2009). https://doi.org/10.1007/s10934-008-9194-y

    CAS  Article  Google Scholar 

  120. 120.

    S. Gaydardzhiev, H. Gusovius, V. Wilker, P. Ay, Gel-casted porous Al2O3 ceramics by use of natural fibres as pore developers. J. Porous. Mater. 15, 475–480 (2008). https://doi.org/10.1007/s10934-007-9099-1

    CAS  Article  Google Scholar 

  121. 121.

    H. Wang, I. Sung, X. Li, D. Kim, Fabrication of porous SiC ceramics with special morphologies by sacrificing template method. J. Porous. Mater. 11, 265–271 (2004)

    CAS  Google Scholar 

  122. 122.

    Z. Yan, K. Feng, J. Tian, Y. Liu, Effect of high titanium blast furnace slag on preparing foam glass–ceramics for sound absorption. J. Porous. Mater. (2019). https://doi.org/10.1007/s10934-019-00722-0

    Article  Google Scholar 

  123. 123.

    T.G. Zielinski, M. Potoczek, R.E. Sliwa, L.J. Nowak, Acoustic absorption of a new class of alumina foams with various high-porosity levels. Arch Acoust. 38, 495–502 (2013). https://doi.org/10.2478/aoa-2013-0059

    Article  Google Scholar 

  124. 124.

    China Ceramic Enterprises http://www.china-ceramics.org/english/products1.asp?id=3413 (2017) Accessed 11 Oct 2017

  125. 125.

    S. Mun, Sound absorption characteristics of porous asphalt concrete pavements. Can. J. Civ. Eng. 37, 273–278 (2010). https://doi.org/10.1139/l09-142

    Article  Google Scholar 

  126. 126.

    B. Peeters, I. Ammerlaan, A. Kuijpers, Noise reduction by absorbing road surfaces: destroying the horn effect, Proc. ISMA. 4053–4064 (2010)

  127. 127.

    M.O. Adebajo, R.L. Frost, J.T. Kloprogge, O. Carmody, S. Kokot, Porous materials for oil spill cleanup: a review of synthesis and absorbing properties. J. Porous. Mater. 10, 159–170 (2003)

    CAS  Google Scholar 

  128. 128.

    J. Lefebvre, A. Leblanc, B. Genestie, T. Chartier, A. Lavie, Acoustic properties of aerogel encapsulated by macroporous cellulose. In the 23rd International Congress on Sound and Vibration ICSV23, Athens, Greece, 10–14, July 2016

  129. 129.

    P. Leroy, A. Berry, P. Herzog, N. Atalla, Experimental study of a smart foam sound absorber. J. Acoust. Soc. Am. 129, 154–164 (2011). https://doi.org/10.1121/1.3514502

    Article  PubMed  Google Scholar 

  130. 130.

    C.A. Gentry, C. Guigou, C.R. Fuller, Smart foam for applications in passive–active noise radiation control. J. Acoust. Soc. Am. 101, 1771–1778 (1997). https://doi.org/10.1121/1.418234

    CAS  Article  Google Scholar 

  131. 131.

    M.J.M. Nor, M. Ayub, R. Zulkifli, N. Amin, M.H. Fouladi, Effect of different factors on the acoustic absorption of coir fiber. J. Appl. Sci. 10(22), 2887–2892 (2010)

    Google Scholar 

  132. 132.

    M.N.A.A. Nordin, L.M. Wan, M.H. Zainulabidin, A.S.M. Kassim. A.M. Aripin, Research finding in natural fibers sound absorbing material, ARPN J. Eng. Appl. Sci. 11(14), 8579–8584 (2016)

  133. 133.

    R.S. Kumar, S. Sundaresan, Acoustic Textiles—Sound Absorption. Textile Technology. http://textination.de/de/document/1130003803282734/1.0/Acoustic20/Textiles20/sound20/absorption.pdf. Accessed 23 Mar 2017

  134. 134.

    A. Nick, U. Becker, W. Thoma, Improved acoustic behavior of interior parts of renewable resources in the automotive industry. J. Polym. Environ. 10, 115–118 (2002). https://doi.org/10.1023/a:1021124214818

    CAS  Article  Google Scholar 

  135. 135.

    H.S. Seddeq, Factors influencing acoustic performance of sound absorptive materials. Aust. J. Basic Appl. Sci. 3(4), 4610–4617 (2009)

    Google Scholar 

  136. 136.

    W. Lauriks, J. Descheemaeker, A. Dijckmans, G. Vermeir, Characterisation of sound absorbing materials. In 10ème Congrès Français d’Acoustique. Lyon. 12–16 April 2010

  137. 137.

    Z. Liu, M. Fard, R. Jazar, Development of an acoustic material database for vehicle interior trims. SAE Technical Papers. (2015). https://doi.org/10.4271/2015-01-0046

  138. 138.

    N. Atalla, Introduction to the numerical modeling and experimental characterization of porous materials. Public Technical Course. Graz, Austria. July 1–2, 2014 https://www.fp7-eliquid.eu/PTC1folder/ptc1-materials/PTC1Lectures. Accessed 23 May 2018

  139. 139.

    N. Voronina, Acoustic properties of fibrous materials. Appl. Acoust. 42, 165–174 (1994)

    Google Scholar 

  140. 140.

    T. Komatsu, Improvement of the Delany-Bazley and Miki models for fibrous sound-absorbing materials. Acoust. Sci. Tech. (2008). https://doi.org/10.1250/ast.29.121

    Article  Google Scholar 

  141. 141.

    V. Desarnaulds, E. Costanzo, A. Carvalho, B. Arlau, Sustainability of acoustic materials and acoustic characterization of sustainable materials. In the 12th International Congress on Sound and Vibration ICSV 12, Lisbon, 11–14 July 2005

  142. 142.

    R. Lanoye, G. Vermeir, W. Lauriks, R. Kruse, V. Mellert, Measuring the free field acoustic impedance and absorption coefficient of sound absorbing materials with a combined particle velocity-pressure sensor. J. Acoust. Soc. Am. (2006). https://doi.org/10.1121/1.2188821

    Article  Google Scholar 

  143. 143.

    F. Chevillotte, Controlling sound absorption by an upstream resistive layer. Appl. Acoust. (2012). https://doi.org/10.1016/j.apacoust.2011.07.005

    Article  Google Scholar 

  144. 144.

    M.E. Delany, E.N. Bazley, Acoustical properties of fibrous absorbent materials. Appl. Acoust. 3, 105–116 (1970)

    Google Scholar 

  145. 145.

    D.A. Bies, C.H. Hansen, Flow resistance information for acoustical design. Appl. Acoust. 13, 357–359 (1980)

    Google Scholar 

  146. 146.

    I.P. Dunn, W.A. Davern, Calculation of acoustic impedance of multi-layer absorbers. Appl. Acoust. (1986). https://doi.org/10.1016/0003-682X(80)90002-X

    Article  Google Scholar 

  147. 147.

    W. Qunli, Empirical relations between acoustical properties and flow resistivity of porous plastic open-cell foam. Appl. Acoust. 125, 141–148 (1988)

    Google Scholar 

  148. 148.

    M. Yasushi, Acoustical properties of porous materials-Modifications of Delany-Bazley models. Acoust. Soc. Jpn. (1990). https://doi.org/10.1250/ast.11.19

    Article  Google Scholar 

  149. 149.

    H. Mamtaz, M.H. Fouladi, M. Al-Atabi, Modelling of acoustic wave propagation through the natural fiber composites. J. Eng. Sci. Technol. 1–10, (2015)

  150. 150.

    M. Garai, F. Pompoli, A simple empirical model of polyester fibre materials for acoustical applications. Appl. Acoust. 66, 1383–1398 (2005)

    Google Scholar 

  151. 151.

    P.V. Bansod, A.R. Mohanty, Inverse acoustical characterization of natural jute sound absorbing material by the particle swarm optimization method. Appl. Acoust. 112, 41–52 (2016)

    Google Scholar 

  152. 152.

    J.F. Allard, New empirical equations for sound propagation in rigid frame fibrous materials. J. Acoust. Soc. Am. 91(6), 3346–3353 (1992)

    Google Scholar 

  153. 153.

    S. Rwawiire, B. Tomkova, J. Militky, L. Hes, B.M. Kale, A. Jabbar, Empirical modeling of sound absorption properties of natural nonwoven fabric (Antiaris toxicaria Barkcloth). Mater. Sci. Forum 868, 201–205 (2016). https://doi.org/10.4028/www.scientific.net/MSF.866.201

    Article  Google Scholar 

  154. 154.

    Y. Champoux, J.F. Allard, Dynamic tortuosity and bulk modulus in air saturated porous media. J. Appl. Phys. 70, 1975 (1991)

    Google Scholar 

  155. 155.

    M.A. Biot, Theory of propagation of elastic waves in a fluid-saturated porous solid. I. Low-frequency range. J. Acoust. Soc. Am. (1956). https://doi.org/10.1121/1.1908241

    Article  Google Scholar 

  156. 156.

    U. Berardi, G. Iannace, Predicting the sound absorption of natural materials: best-fit inverse laws for the acoustic impedance and the propagation constant. Appl. Acoust. 115, 131–138 (2017)

    Google Scholar 

  157. 157.

    C.E. Good, A.A. Glean, J.F. Vignola, J.A. Judge, T.J. Ryan, N.B. Bull, D. Turo, A design of an impedance tube for teaching acoustic material properties and laboratory techniques. Proc. Meet. Acoust. (2013). https://doi.org/10.1121/1.4798375

    Article  Google Scholar 

  158. 158.

    J. Wenger, T. Stern, J.P. Schoggl, R. Ree, U.D. Corato, I.D. Bari, G. Bell, H. Stichnothe, Natural fibers and fiber-based materials in biorefineries: status report 2018. IEA Bioenergy (2018)

  159. 159.

    P. Pecas, H. Carvalho, H. Salman, M. Leite, Natural fibre composites and their applications: a review. J. Compos. Sci. (2018). https://doi.org/10.3390/jcs2040066

    Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to S. J. Pawar.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Kalauni, K., Pawar, S.J. A review on the taxonomy, factors associated with sound absorption and theoretical modeling of porous sound absorbing materials. J Porous Mater 26, 1795–1819 (2019). https://doi.org/10.1007/s10934-019-00774-2

Download citation

Keywords

  • Acoustic
  • Natural absorbers
  • Sound absorption coefficient
  • Synthetic absorbers
  • Theoretical models