RETRACTED ARTICLE: MOF-derived highly active Ni/Co/NC electrocatalyst and its application for hydrogen evolution reaction

This article was retracted on 18 June 2020

This article has been updated

Abstract

The development of electrocatalysts with excellent activity for clean and sustainable H2 has been considered as an efficient way to store energy and meet the increasing energy and environmental demands. In this paper, we used zeolitic imidazolate frameworks-67 (ZIF-67) as precursors to synthesize the highly active N-doped graphene loaded with Ni and Co nanoparticles (Ni/Co/NC) for hydrogen evolution reaction (HER). The physical and electrochemical characterization of all synthesized samples were analyzed by X-ray diffraction, Raman spectra, scanning electron microscopy, transmission electron microscopy, X-ray photoelectron spectroscopy and HER. The results show that the organic ligands of ZIF-67 were successfully transformed into N-doped graphene after high temperature treatment. Ni element was well dispersed in the supporting graphene and can make the graphene keeping the dodecahedral morphology with hollow structure. Co nanoparticles were encapsulated by a layer of graphene. Electrochemical tests show that Ni/Co/NC800 exhibits excellent performance for hydrogen generation: the onset overpotential is only 125 mV, the Tafel slope is 57.6 mV/dec. The excellent performance of Ni/Co/NC800 makes its being a promising candidate for energy storage and conversion applications.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Change history

  • 18 June 2020

    The Editor-in-Chief has retracted this article [1]. Concerns were raised with Figures 2b and 7a. Subsequent postpublication review concluded that the results of the article are unreliable. Additionally, Figure 7b was reproduced from [2] without permission. All authors agree with the retraction.

References

  1. 1.

    H. Herring, Energy efficiency-a critical view. Energy 31, 10–20 (2006)

    Google Scholar 

  2. 2.

    X.G. Li, Diversification and localization of energy systems for sustainable development and energy security. Energy Policy 33, 2237–2243 (2005)

    Google Scholar 

  3. 3.

    G.Z. Li, S.W. Niu, L.B. Ma, X. Zhang, Assessment of environmental and economic costs of rural household energy consumption in Loess Hilly Region, Gansu Province, China. Renew. Energy 34, 1438–1444 (2009)

    Google Scholar 

  4. 4.

    G. Knothe, Dependence of biodiesel fuel properties on the structure of fatty acid alkyl esters. Fuel Process. Technol. 86, 1059–1070 (2005)

    CAS  Google Scholar 

  5. 5.

    J. Goldemberg, Ethanol for a sustainable energy future. Science 315, 808–810 (2007)

    CAS  PubMed  Google Scholar 

  6. 6.

    E.J. Popczun, J.R. McKone, C.G. Read, A.J. Biacchi, A.M. Wiltrout, N.S. Lewis, R.E. Schaak, Nanostructured nickel phosphide as an electrocatalyst for the hydrogen evolution reaction. J. Am. Chem. Soc. 135, 9267–9270 (2013)

    CAS  PubMed  Google Scholar 

  7. 7.

    D.S. Kong, J.J. Cha, H.T. Wang, H.R. Lee, Y. Cui, First-row transition metal dichalcogenide catalysts for hydrogen evolution reaction. Energy Environ. Sci. 6, 3553–3558 (2013)

    CAS  Google Scholar 

  8. 8.

    X.X. Zou, X.X. Huang, A. Goswami, R. Silva, B.R. Sathe, E. Mikmekova, T. Asefa, Cobalt-embedded nitrogen-rich carbon nanotubes efficiently catalyze hydrogen evolution reaction at all pH values. Angew. Chem. 126, 4461–4465 (2014)

    Google Scholar 

  9. 9.

    S.A. Grigoriew, P. Millet, V.N. Fateev, Evaluation of carbon-supported Pt and Pd nanoparticles for the hydrogen evolution reaction in PEM water electrolysers. J. Power Sour. 177, 281–285 (2008)

    Google Scholar 

  10. 10.

    E. Skúlason, G.S. Kalberg, J. Rossmeisl, T. Bligaard, J. Greeley, H. Jónsson, J.K. Nørskov, Density functional theory calculations for the hydrogen evolution reaction in an electrochemical double layer on the Pt (111) electrode. Phys. Chem. Chem. Phys. 9, 3241–3250 (2007)

    PubMed  Google Scholar 

  11. 11.

    Z.Q. Yao, M.S. Zhu, F.X. Jiang, Y.K. Du, C.Y. Wang, P. Wang, Highly efficient electrocatalystic performance based on Pt nanoflowers modified reduced graphene oxide/carbon cloth electrode. J. Mater. Chem. 22, 13707–13713 (2012)

    CAS  Google Scholar 

  12. 12.

    D.Y. Wang, M. Gong, H.L. Chou, C.J. Pan, H.A. Chen, Y.P. Wu, M.C. Lin, M.Y. Guan, C.W. Chen, Y.L. Wang, B.J. Hwang, C.C. Chen, H.J. Dai, Highly active and stable hybrid catalyst of cobalt-doped FeS2 nanosheets-carbon nanotubes for hydrogen evolution reaction. J. Am. Chem. Soc. 137, 1587–1592 (2015)

    CAS  PubMed  Google Scholar 

  13. 13.

    Y.G. Li, H.L. Wang, L.M. Xie, Y.Y. Liang, G.S. Hong, H.J. Dai, MoS2 nanoparticles grown on graphene: an advanced catalyst for the hydrogen evolution reaction. J. Am. Chem. Soc. 133, 7296–7299 (2011)

    CAS  PubMed  Google Scholar 

  14. 14.

    E.J. Popczun, C.G. Read, C.W. Roske, N.S. Lewis, R.E. Schaak, Highly active electrocatalysis of the hydrogen evolution reaction by cobalt phosphide nanoparticles. Angew. Chem. 126, 5531–5534 (2014)

    Google Scholar 

  15. 15.

    S.J. Xu, D. Li, P.Y. Wu, One-pot, facile, and versatile synthesis of monolayer MoS2/WS2 quantum dots as bioimaging probes and efficient electrocatalysts for hydrogen evolution reaction. Adv. Funct. Mater. 25, 1127–1136 (2015)

    CAS  Google Scholar 

  16. 16.

    D. Viry, M. Salehi, R. Silva, T. Fujita, M. Chen, T. Asefa, V.B. Shenoy, G. Eda, M. Chhowalla, Conducting MoS2 nanosheets as catalysts for hydrogen evolution reaction. Nano Lett. 13, 6222–6227 (2013)

    Google Scholar 

  17. 17.

    J. Deng, P.J. Ren, D.H. Deng, L. Yu, F. Yang, X.H. Bao, Highly active and durable non-precious-metal catalysts encapsulated in carbon nanotubes for hydrogen evolution reaction. Energy Environ. Sci. 7, 1919–1923 (2014)

    CAS  Google Scholar 

  18. 18.

    W.J. Zhou, T.L. Xiong, C.H. Shi, J. Zhou, N.W. Zhu, L.G. Li, Z.H. Tang, S.W. Chen, Bioreduction of precious metals by microorganism: efficient gold@N-doped carbon electrocatalysts for the hydrogen evolution reaction. Angew. Chem. Int. Ed. 128, 8556–8560 (2016)

    Google Scholar 

  19. 19.

    Y.J. Tang, M.R. Gao, C.H. Liu, S.L. Li, H.L. Jiang, Y.Q. Lan, M. Han, S.H. Yu, Porous molybdenum-based hybrid catalysts for highly efficient hydrogen evolution. Angew. Chem. Int. Ed. 54, 12928–12932 (2015)

    CAS  Google Scholar 

  20. 20.

    U.P.N. Tran, K.K.A. Le, N.T.S. Phan, Expanding applications of metal-organic frameworks: zeolite imidazolate framework ZIF-8 as an efficient heterogeneous catalyst for the knoevenagel reaction. ACS Catal. 1, 120–127 (2011)

    CAS  Google Scholar 

  21. 21.

    Y.B. Huang, Y.H. Zhang, X.X. Cheng, D.S. Wu, Z.G. Yi, R. Cao, Bimetallic alloy nanocrystals encapsulated in ZIF-8 for synergistic catalysis of ethylene oxidative degradation. Chem. Commun. 50, 10115–10117 (2014)

    CAS  Google Scholar 

  22. 22.

    X.B. Yang, Z.D. Wen, Z.L. Wu, X.T. Luo, Synthesis of ZnO/ZIF-8 hybrid photocatalysts derived from ZIF-8 with enhanced photocatalytic activity. Inorg. Chem. Front. 5, 687–693 (2018)

    CAS  Google Scholar 

  23. 23.

    Y.S. Bae, C.Y. Lee, K.C. Kim, O.K. Farha, P. Nickias, J.T. Hupp, S.T. Nguyen, R.Q. Snurr, High propene/propane selectivity in isostructural metal-organic frameworks with high densities of open metal sites. Angew. Chem. Int. Ed. 51, 1857–1860 (2012)

    CAS  Google Scholar 

  24. 24.

    X.P. Dai, M.Z. Liu, Z.Z. Li, A. Jin, Y.D. Ma, X.L. Huang, H. Sun, H. Wang, X. Zhang, Molybdenum polysulfide anchored on porous Zr-metal organic framework to enhance the performance of hydrogen evolution reaction. J. Phys. Chem. C 120, 12539–12548 (2016)

    CAS  Google Scholar 

  25. 25.

    T. Tian, L. Huang, L.H. Ai, J. Jiang, Surface anion-rich NiS2 hollow microspheres derived from metal-organic frameworks as a robust electrocatalyst for the hydrogen evolution reaction. J. Mater. Chem. A 5, 20985–20992 (2017)

    CAS  Google Scholar 

  26. 26.

    Y.F. Zhang, X.J. Bo, C. Luhana, H. Wang, M. Li, L.P. Guo, Facile synthesis of a Cu-based MOF confined in macroporous carbon hybrid material with enhanced electrocatalytic ability. Chem. Commun. 49, 6885–6887 (2013)

    CAS  Google Scholar 

  27. 27.

    X.B. Yang, J. Chen, Y.Q. Chen, P.J. Feng, H.X. Lai, J.T. Li, X.T. Luo, Novel Co3O4 nanoparticles/nitrogen-doped carbon composites with extraordinary catalytic activity for oxygen evolution reaction (OER). Nano Micro Lett. 10, 15 (2018)

    Google Scholar 

  28. 28.

    M. Huang, X.L. Zhao, F. Li, W. Li, B. Zhao, Y.X. Zhang, Synthesis of Co3O4/SnO2@MnO2 core-shell nanostructures for high-performance supercapacitors. J. Mater. Chem. A 3, 12852–12857 (2015)

    CAS  Google Scholar 

  29. 29.

    Y.Q. Chen, J.T. Li, G.H. Yue, X.T. Luo, Novel Ag@nitrogen-doped porous carbon composite with high electrochemical performance as anode materials for lithium-ion batteries. Nano Micro Lett. 9, 32 (2017)

    Google Scholar 

  30. 30.

    J.P. Hu, J. Chen, H. Lin, R.L. Liu, X.B. Yang, MOF derived Ni/Co/NC catalysts with enhanced properties for oxygen evolution reaction. J. Solid State Chem. 259, 1–4 (2018)

    CAS  Google Scholar 

  31. 31.

    L.J. Li, P.C. Dai, X. Gu, Y. Wang, L.T. Yan, X.B. Zhao, High oxygen reduction activity on a metal-organic framework derived carbon combined with high degree of graphitization and pyridinic-N dopants. J. Mater. Chem. A 5, 789–795 (2017)

    CAS  Google Scholar 

  32. 32.

    K.L. Jiao, Z.P. Kang, B. Wang, S.Q. Jiao, Y. Jiang, Z.Q. Hu, Applying Co3O4@nanoporous carbon to nonenzymatic glucose biofuel cell and biosensor. Electroanalysis 30, 1–9 (2018)

    Google Scholar 

  33. 33.

    M. Huang, K. Mi, J.H. Zhang, H.L. Liu, T.T. Yu, A.H. Yuan, Q.H. Kong, S.L. Xiong, MOF-derived bi-metal embedded N-doped carbon polyhedral nanocages with enhanced lithium storage. J. Mater. Chem. A 5, 266–274 (2017)

    CAS  Google Scholar 

  34. 34.

    J. Yuan, J. Wen, Q. Gao, S. Chen, J. Li, X. Li, Y. Fang, Amorphous Co3O4 modified CdS nanorods with enhanced visible-light photocatalytic H2-production activity. Dalton Trans. 44, 1680–1689 (2015)

    CAS  PubMed  Google Scholar 

  35. 35.

    C.H. Zhang, L. Fu, N. Liu, M.H. Liu, Y.Y. Wang, Z.F. Liu, Synthesis of nitrogen-doped graphene using embedded carbon and nitrogen sources. Adv. Mater. 23, 1020–1024 (2011)

    CAS  PubMed  Google Scholar 

  36. 36.

    K. Artyushkova, B. Kiefer, B. Halevi, A. Knop-Gericke, R. Schlogl, R. Atanassov, Density functional theory calculations of XPS binding energy shift for nitrogen-containing graphene-like structures. Chem. Commun. 49, 2539–2541 (2013)

    CAS  Google Scholar 

  37. 37.

    F.M. Hassan, V. Chabot, J.D. Li, B.K. Kim, L. Ricardez-Sandoval, A.P. Yu, Pyrrolic-structure enriched nitrogen doped graphene for highly efficient next generation supercapacitors. J. Mater. Chem. A 1, 2904–2912 (2013)

    CAS  Google Scholar 

  38. 38.

    M. Chu, L. Wang, X. Li, M.J. Hou, N. Li, Y.Z. Dong, X.Z. Li, Z.Z. Xie, Y.W. Lin, W.Q. Cai, C.C. Zhang, Carbon coated nickel-Nickel oxide composites as a highly efficient catalyst for hydrogen evolution reaction in acid medium. Electrochim. Acta 264, 284–291 (2017)

    Google Scholar 

  39. 39.

    X.D. Wang, H.Y. Chen, Y.F. Xu, J.F. Liao, B.X. Chen, H.S. Rao, D.B. Kuang, C.Y. Su, J. Mater. Chem. A 5, 7191–7199 (2017)

    CAS  Google Scholar 

  40. 40.

    L. Liao, S.N. Wang, J.J. Xiao, X.J. Bian, Y.H. Zhang, M.D. Scanlon, X.L. Hu, Y. Tang, B.H. Liu, H.H. Girault, A nanoporous molybdenum carbide nanowire as an electrocatalyst for hydrogen evolution reaction. Energy Environ. Sci. 7, 387–392 (2014)

    CAS  Google Scholar 

  41. 41.

    H.L. Lin, Z.P. Shi, S.N. He, X. Yu, S.N. Wang, Q.S. Gao, Y. Tang, Heteronanowires of MoC-Mo2C as efficient electrocatalysts for hydrogen evolution reaction. Chem. Sci. 7, 3399–3405 (2016)

    CAS  PubMed  PubMed Central  Google Scholar 

  42. 42.

    J. Jiang, Q.X. Liu, C.M. Zeng, L.H. Ai, Cobalt/molybdenum carbide@N-doped carbon as a bifunctional electrocatalyst for hydrogen and oxygen evolution reactions. J. Mater. Chem. A 5, 16929–16935 (2017)

    CAS  Google Scholar 

  43. 43.

    Y. Cui, C.W. Zhou, X.Z. Li, Y. Gao, J. Zhang, High performance electrocatalysis for hydrogen evolution reaction using nickel-doped CoS2 nanostructures: experimental and DFT insights. Electrochim. Acta 228, 428–435 (2017)

    CAS  Google Scholar 

Download references

Acknowledgements

The authors wish to acknowledge the financial supports from the Fujian Key Laboratory of Advanced Materials, Educational Research Projects for Young and Middle-aged Teachers in Fujian Province (Grant No. JT180549), Natural Science Foundation of Fujian Province (Grant No. 2019J01020797), The Project of Fujian Provincial Key Laboratory of Eco-Inductrial Green Technology (Grant No. WYKF2018-8), Program for Outstanding Young Scientific Research Talents in Fujian Province University (MinKeJiao, 2018, No 47).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Juan Yang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Yang, X., Lin, H., Hua, W. et al. RETRACTED ARTICLE: MOF-derived highly active Ni/Co/NC electrocatalyst and its application for hydrogen evolution reaction. J Porous Mater 26, 1713–1720 (2019). https://doi.org/10.1007/s10934-019-00772-4

Download citation

Keywords

  • ZIF-67
  • Ni/Co/NC
  • Hollow structure
  • Hydrogen evolution reaction