Lacunary phosphomolybdate PMo11 supported on mesoporous KIT-6 as catalyst for oxidative desulfurization of model diesel

Abstract

In this study, an efficient simultaneous extraction-oxidation catalytic system for deep desulfurization of a model fuel was investigated. For this purpose, mono lacunary phosphomolybdate (PMo11) was synthesized. Then a series of PMo11 catalysts were supported on mesoporous silica material (KIT-6). Structural characterization of the catalysts was performed by various techniques such as SEM, TEM, FT-IR, FT-Raman, ICP, BET and XRD. The results of the XRD and SEM analysis showed that the synthesized PMo11 has a semi-crystalline structure. It was observed that the catalyst with 30% PMo11 loading had the most catalytic activity on dibenzothiophene and benzothiophene removal in the oxidative desulfurization process. In this catalytic system, various conditions such as temperature, oxidizing agent value, catalyst amount, and extractant solvent type were varied and their effect on the reaction was evaluated. Under optimal conditions, dibenzothiophene was eliminated up to over 92.5%. The catalyst could be recycled and reused four times without significant reduction in its catalytic activity.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

References

  1. 1.

    L. Yang, X. Li, A. Wang, R. Prins, Y. Chen, X. Duan, J. Catal. 330, 330 (2015)

    CAS  Google Scholar 

  2. 2.

    B. Bertleff, J. Claußnitzer, W. Korth, P. Wasserscheid, A. Jess, J. Albert, ACS Sustain. Chem. Eng. 5, 4110 (2017)

    CAS  Google Scholar 

  3. 3.

    A. Gómez-Paricio, A. Santiago-Portillo, S. Navalón, P. Concepción, M. Alvaro, H. Garcia, Green Chem. 18, 508 (2016)

    Google Scholar 

  4. 4.

    H. Lü, C. Deng, W. Ren, X. Yang, Fuel Process. Technol. 119, 87 (2014)

    Google Scholar 

  5. 5.

    W. Jiang, D. Zheng, S. Xun, Y. Qin, Q. Lu, W. Zhu, H. Li, Fuel 190, 1 (2017)

    CAS  Google Scholar 

  6. 6.

    F. Mirante, L. Dias, M. Silva, S.O. Ribeiro, M.C. Corvo, B. Castro, C.M. Granadeiro, S.S. Balula, Catal. Commun. 104, 1 (2018)

    CAS  Google Scholar 

  7. 7.

    L.S. Nogueira, S. Ribeiro, C.M. Granadeiro, E. Pereira, G. Feio, L. Cunha-Silva, S.S. Balula, Dalton Trans. 42, 9518 (2014)

    Google Scholar 

  8. 8.

    J. Wang, D. Zhao, K. Li, Energy Fuel 24, 2527 (2010)

    CAS  Google Scholar 

  9. 9.

    X. Zhou, J. Li, X. Wang, K. Jin, W. Ma, Fuel Process. Technol. 90, 317 (2009)

    CAS  Google Scholar 

  10. 10.

    M.A. Safa, T. Al-Shamary, R. Al-Majren, R. Bouresli, X. Ma, Energy Fuels 31, 7464 (2017)

    CAS  Google Scholar 

  11. 11.

    A.D. Bokare, W. Choi, J. Hazard. Mater. 304, 313 (2016)

    CAS  PubMed  Google Scholar 

  12. 12.

    F. Banisharif, M.R. Dehghani, J.M. Campos-Martin, Oxid. Energy Fuels 31, 5419 (2017)

    CAS  Google Scholar 

  13. 13.

    M. Craven, D. Xiao, C. Kunstmann-Olsen, E.F. Kozhevnikova, F. Blanc, A. Steiner, I.V. Kozhevnikov, Appl. Catal. B 231, 82 (2018)

    CAS  Google Scholar 

  14. 14.

    R.D. Andrei, N. Cambruzzi, M. Bonne, B. Lebeau, V. Hulea, J. Porous Mater. 26, 533 (2019)

    CAS  Google Scholar 

  15. 15.

    M. Craven, D. Xiao, C. Kunstmann-Olsen, E.F. Kozhevnikova, F. Blanc, A. Steiner, I.V. Kozhevnikov, Appl. Catal. B 231, 82 (2018)

    CAS  Google Scholar 

  16. 16.

    F. Banisharif, M.R. Dehghani, M.C. Capel-Sánchez, J.M. Campos-Martin, Ind. Eng. Chem. Res. 56, 3839 (2017)

    CAS  Google Scholar 

  17. 17.

    Y. Shiraishi, K. Tachibana, T. Hirai, I. Komasawa, Ind. Eng. Chem. Res. 41, 4362 (2002)

    CAS  Google Scholar 

  18. 18.

    A.D. Giuseppe, M. Crucianelli, F. De Angelis, C. Crestini, R. Saladino, Appl. Catal. B 89, 239 (2009)

    Google Scholar 

  19. 19.

    J.M. Brégeault, Dalton Trans. 0, 3389 (2003)

    Google Scholar 

  20. 20.

    D. Yue, J. Lei, Z. Lina, G. Zhenran, X. Du, J. Li, Catal. Lett. 148, 1100 (2018)

    CAS  Google Scholar 

  21. 21.

    B.N. Bhadra, J.Y. Song, N.A. Khan, S.H. Jhung, ACS Appl. Mater. Interfaces 9, 31192 (2017)

    CAS  PubMed  Google Scholar 

  22. 22.

    A.K. Dizaji, H.R. Mortaheb, B. Mokhtarani, Chem. Eng. J. 335, 362 (2018)

    Google Scholar 

  23. 23.

    W. Zhu, B. Dai, P. Wu, Y. Chao, J. Xiong, S. Xun, H. Li, H. Li, ACS Sustain. Chem. Eng. 3, 186 (2015)

    CAS  Google Scholar 

  24. 24.

    D. Yue, J. Lei, Y. Peng, J. Li, X. Du, Fuel 2206, 148 (2018)

    Google Scholar 

  25. 25.

    E. Torres-Garcia, A. Galano, G. Rodriguez-Gattorno, J. Catal. 282, 201–208 (2011)

    CAS  Google Scholar 

  26. 26.

    M. Sadakane, E. Steckhan, Chem. Rev. 98, 219 (1998)

    CAS  PubMed  Google Scholar 

  27. 27.

    S. Roy, D. Mumbaraddi, A. Jain, S.J. George, S.C. Peter, Inorg. Chem. 57, 590 (2018)

    CAS  PubMed  Google Scholar 

  28. 28.

    M. Wu, Q.Q. Zhao, J. Li, X.L. Su, H.Y. Wu, X.X. Guan, X.C. Zheng, J. Porous Mater. 23, 1329 (2016)

    Google Scholar 

  29. 29.

    N. Narkhede, S. Singh, A. Patel, Green Chem. 17, 89 (2015)

    CAS  Google Scholar 

  30. 30.

    J. Yuan, J. Xiong, J. Wang, W. Ding, L. Yang, M. Zhang, W. Zhu, H. Li, J. Porous Mater. 23, 823 (2016)

    CAS  Google Scholar 

  31. 31.

    N.C. Coronel, M.J. da Silva, Lacunar. J. Clust. Sci. 29, 195 (2018)

    CAS  Google Scholar 

  32. 32.

    M. Li, J. Shen, X. Ge, X. Chen, Appl. Catal. A 206, 161 (2001)

    CAS  Google Scholar 

  33. 33.

    M.J. da Silva, L.C. de Andrade, L.R. Natalino, S.O. Ferreira, N.C. Coronel, Catal. Lett. 148, 1202 (2018)

    Google Scholar 

  34. 34.

    N. Narkhede, A. Patel, S. Singh, Dalton Trans. 43, 2512 (2014)

    CAS  PubMed  Google Scholar 

  35. 35.

    S. Pathan, A. Patel, Dalton Trans. 40, 348 (2011)

    CAS  PubMed  Google Scholar 

  36. 36.

    M. Rezaei, A.N. Chermahini, H.A. Dabbagh, J. Environ. Chem. Eng. 5, 3529 (2017)

    CAS  Google Scholar 

  37. 37.

    S. Pathan, A. Patel, Appl. Catal. A 459, 59 (2013)

    CAS  Google Scholar 

  38. 38.

    T.A.G. Duarte, I.C.M.S. Santos, M.M.Q. Simoes, M. Graca, P.M.S. Neves, A.M.V. Cavaleiro, J.A.S. Cavaleiro, Catal. Lett. 144, 104 (2014)

    CAS  Google Scholar 

  39. 39.

    H.M. Kao, P.C. Chang, Y.W. Liao, L.P. Lee, C.H. Chien, Microporous Mesoporous Mater. 114, 352 (2008)

    CAS  Google Scholar 

  40. 40.

    C.A. Emeis, J. Catal. 141, 347 (1993)

    CAS  Google Scholar 

  41. 41.

    L.F. Ramı´rez, E. Torres, R. Go´mez, V. Gonza´lez, F. Murrieta, Catal. Today 98, 289 (2004)

    Google Scholar 

  42. 42.

    J.L. Garcıa-Gutierrez, G.A. Fuentes, M.E. Hernandez-Teran, P. Garcıa, F. Murrieta-Guevara, F. Jime´nez-Cruz, Appl. Catal. A 334, 366 (2008)

    Google Scholar 

  43. 43.

    Y. Gao, R. Gao, G. Zhang, Y. Zheng, J. Zhao, Fuel 224, 261 (2018)

    CAS  Google Scholar 

  44. 44.

    D. Julião, A.C. Gomes, M. Pillinger, R. Valença, J.C. Ribeiro, B. de Castro, I.S. Gonçalves, L.C. Silva, S.S. Balula, Eur. J. Inorg. Chem. 2016, 5114 (2016)

    Google Scholar 

  45. 45.

    Z.E.A. Abdallaa, B. Li, A. Tufail, Colloids Surf. A 341, 86 (2009)

    Google Scholar 

  46. 46.

    M.A. Rezvani, S. Khandan, N. Sabahi, Energy Fuels 31, 5472 (2017)

    CAS  Google Scholar 

  47. 47.

    A. Khodadadi Dizaji, B. Mokhtarani, H.R. Mortahe, Fuel 236, 717 (2019)

    Google Scholar 

  48. 48.

    A. Teimouri, M. Mahmoudsalehi, H. Salavati, Int. J Hydrogen Energy 43, 14816 (2018)

    CAS  Google Scholar 

  49. 49.

    Z.E.A. Abdallaa, B. Li, Chem. Eng. J. 200–202, 113 (2012)

    Google Scholar 

  50. 50.

    D. Yue, J. Lei, Z. Lina, G. Zhenran, X. Du, J. Li, J. Porous Mater. 26, 133 (2019)

    CAS  Google Scholar 

  51. 51.

    D. Yue, J. Lei, Y. Peng, J. Li, X. Du, J. Porous Mater. 25, 727 (2019)

    Google Scholar 

  52. 52.

    A. Moslemi, A.N. Chermahini, J.N. Sarpiri, S. Rezaei, M. Barati, J. Taiwan, Inst. Chem. E 97, 237 (2019)

    CAS  Google Scholar 

Download references

Acknowledgements

This work was conducted through financial support by the Isfahan University of Technology (Research Council Grant) and the Iranian National Science Foundation (INSF, Grant Number 95813865).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Alireza Najafi Chermahini.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 1699 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Najafi Chermahini, A., Rafiee, M. & Shaybanizadeh, S. Lacunary phosphomolybdate PMo11 supported on mesoporous KIT-6 as catalyst for oxidative desulfurization of model diesel. J Porous Mater 26, 1691–1698 (2019). https://doi.org/10.1007/s10934-019-00770-6

Download citation

Keywords

  • Lacunary phosphomolybdate
  • Oxidative desulfurization
  • Dibenzothiophene
  • Benzothiophene
  • PMo11
  • KIT-6