Skip to main content
Log in

Magnetic iron oxide modified MIL-101 composite as an efficient visible-light-driven photocatalyst for methylene blue degradation

  • Published:
Journal of Porous Materials Aims and scope Submit manuscript

Abstract

In this study, a facile hydrothermal method was used to prepare Fe3O4/MIL-101 composite as a photocatalyst. The resulting composite was characterized using X-ray diffraction, scanning electron microscopy, nitrogen adsorption/desorption isotherms, thermal analysis, X-ray photoelectron spectroscopy, and UV–Vis diffuse reflection spectroscopy. The Fe3O4/MIL-101 composite possesses a large surface area and mesoporous structure and exhibits a good photocatalytic activity for the MB degradation in the visible light region. A kinetic model for dye degradation over this heterogeneous catalyst was proposed by combining the parameters of the Langmuir isotherms and the kinetics of the unimolecular reaction. The proposed model fixes well with the experimental data. The mechanism of MB photocatalytic degradation is also addressed. The catalyst is stable after three recycles, which makes it a potential candidate for environmental restoration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. H. Safajou, H. Khojasteh, M. Salavati-Niasari, S. Mortazavi-Derazkola, Enhanced photocatalytic degradation of dyes over graphene/Pd/TiO2 nanocomposites: TiO2 nanowires versus TiO2 nanoparticles. J. Colloid Interface Sci. 498, 423–432 (2017)

    CAS  PubMed  Google Scholar 

  2. M. Ghanbari, M. Salavati-Niasari, Tl4CdI6 nanostructures: facile sonochemical synthesis and photocatalytic activity for removal of organic dyes. Inorg. Chem. 57, 11443–11455 (2018)

    CAS  PubMed  Google Scholar 

  3. M. Ghanbari, F. Ansari, M. Salavati-Niasari, Simple synthesis-controlled fabrication of thallium cadmium iodide nanostructures via a novel route and photocatalytic investigation in degradation of toxic dyes. Inorgan. Chim. Acta 455, 88–97 (2017)

    CAS  Google Scholar 

  4. S. Zinatloo-Ajabshir, M. Salavati-Niasari, M. Hamadanian, Praseodymium oxide nanostructures: novel solvent-less preparation, characterization and investigation of their optical and photocatalytic properties. RSC Adv. 5, 33792–33800 (2015)

    CAS  Google Scholar 

  5. S. Zinatloo-Ajabshir, M. Salavati-Niasari, Nanocrystalline Pr6O11: synthesis, characterization, optical and photocatalytic properties. New J. Chem. 39, 3948–3955 (2015)

    CAS  Google Scholar 

  6. S. Zinatloo-Ajabshir, M. Salavati-Niasari, Facile route to synthesize zirconium dioxide (ZrO2) nanostructures: structural, optical and photocatalytic studies. J. Mol. Liq. 216, 545–551 (2016)

    CAS  Google Scholar 

  7. S. Zinatloo-Ajabshir, M.S. Morassaei, M. Salavati-Niasari, Facile fabrication of Dy2Sn2O72 nanocomposites as an effective photocatalyst for degradation and removal of organic contaminants. J. Colloid Interface Sci. 497, 298–308 (2017)

    CAS  PubMed  Google Scholar 

  8. T. Tachikawa, J.R. Choi, M. Fujitsuka, T. Majima, MOF-5 Tachikawa.pdf, J. Phys. Chem, C 112, 14090–14101 (2008)

    CAS  Google Scholar 

  9. G. Férey, C. Mellot-Draznieks, C. Serre, F. Millange, J. Dutour, S. Surblé, I. Margiolaki, A chromium terephthalate-based solid with unusually large pore volumes and surface area. Science 309, 2040–2042 (2005)

    PubMed  Google Scholar 

  10. L.E. Kreno, K. Leong, O.K. Farha, M. Allendorf, R.P. Van Duyne, J.T. Hupp, Metal–organic framework materials as chemical sensors. Chem. Rev. 112, 1105–1125 (2012)

    CAS  PubMed  Google Scholar 

  11. H.B.T. Jeazet, C. Staudt, C. Janiak, A method for increasing permeability in O2/N2 separation with mixed-matrix membranes made of water-stable MIL-101 and polysulfone. Chem. Commun. 48, 2140–2142 (2012)

    CAS  Google Scholar 

  12. A. Corma, H. García, F.X. Llabrés i Xamena, Engineering metal organic frameworks for heterogeneous catalysis. Chem. Rev. 110, 4606–4655 (2010). https://doi.org/10.1021/cr9003924

    Article  CAS  PubMed  Google Scholar 

  13. N.T.S. Phan, T.T. Nguyen, Q.H. Luu, L.T.L. Nguyen, Paal-Knorr reaction catalyzed by metal-organic framework IRMOF-3 as an efficient and reusable heterogeneous catalyst. J. Mol. Catal. A 363–364, 178–185 (2012)

    Google Scholar 

  14. K.S. Min, M.P. Suh, Silver(I)-polynitrile network solids for anion exchange: anion-induced transformation of supramolecular structure in the crystalline state. J. Am. Chem. Soc. 122, 6834–6840 (2000)

    CAS  Google Scholar 

  15. P.N. Dave, L.V. Chopda, Application of iron oxide nanomaterials for the removal of heavy metals. J. Nanotechnol. 2014, 1–14 (2014)

    Google Scholar 

  16. T. Wang, P. Zhao, N. Lu, H. Chen, C. Zhang, X. Hou, Facile fabrication of Fe3O4/MIL-101(Cr) for effective removal of acid red 1 and orange G from aqueous solution. Chem. Eng. J. 101, 1–50 (2016)

    CAS  Google Scholar 

  17. X. Yue, W. Guo, X. Li, H. Zhou, R. Wang, Core-shell Fe3O4@ MIL-101(Fe) composites as heterogeneous catalysts of persulfate activation for the removal of acid orange 7. Environ. Sci. Pollut. Res. 101, 1629–1658 (2016)

    Google Scholar 

  18. K. Folens, K. Leus, N.R. Nicomel, M. Meledina, S. Turner, G. Van Tendeloo, G. Du Laing, P. Van Der Voort, Fe3O4@MIL-101—a selective and regenerable adsorbent for the removal of as species from water. Eur. J. Inorg. Chem. 2016, 4395–4401 (2016)

    CAS  Google Scholar 

  19. M. Saikia, D. Bhuyan, L. Saikia, Facile synthesis of Fe3O4 nanoparticles on metal organic framework MIL-101(Cr): characterization and catalytic activity. New J. Chem. 39, 64–67 (2015)

    CAS  Google Scholar 

  20. Z.W. Jiang, Y.F.L. Fu Qiang Dai, C.Z. Huang, Facile synthesis of Fe3O4/MIL-101(Fe) composite with enhanced catalytic performance. RSC Adv. 1, 1–3 (2016)

    Google Scholar 

  21. L. Shen, S. Liang, W. Wu, R. Liang, L. Wu, CdS-decorated UiO–66(NH2) nanocomposites fabricated by a facile photodeposition process: an efficient and stable visible-light-driven photocatalyst for selective oxidation of alcohols. J. Mater. Chem. A 1, 11473–11482 (2013)

    CAS  Google Scholar 

  22. Y. Xu, Q. Chen, H. Yang, M. Lv, Q. He, X. Liu, F. Wei, Enhanced photodegradation of Rhodamine B under visible light by N-K2Ti4O9/MIL-101 composite. Mater. Sci. Semicond. Process. 36, 115–123 (2015)

    CAS  Google Scholar 

  23. L. Wang, L. Zan, WO3 in suit embed into MIL-101 for enhancement charge carrier separation of photocatalyst. Sci. Rep. 9, 4860–4872 (2019)

    PubMed  PubMed Central  Google Scholar 

  24. T. Zhou, G. Zhang, H. Zhang, H. Yang, P. Ma, X. Li, X. Qiu, G. Liu, Highly efficient visible-light-driven photocatalytic degradation of rhodamine B by a novel Z-scheme Ag3 PO4/MIL-101/NiFe2O4 composite. Catal. Sci. Technol. 8, 2402–2416 (2018)

    CAS  Google Scholar 

  25. D. Ding, Z. Jiang, Q. Ouyang, L. Wang, Y. Zhang, L. Zan, Enhanced photocatalytic activity and mechanism insight of MnOx/MIL-101. J. Taiwan Inst. Chem. Eng. 82, 226–232 (2018)

    CAS  Google Scholar 

  26. M. Lv, H. Yang, Y. Xu, Q. Chen, X. Liu, F. Wei, Improving the visible light photocatalytic activities of Bi25FeO40/MIL-101/PTH via polythiophene wrapping. J. Environ. Chem. Eng. 3, 1003–1008 (2015)

    CAS  Google Scholar 

  27. A.E. Greenberg, Standard Methods for the Examination of Water and Wastewater (American Public Health Association, Washington, DC, 1985)

    Google Scholar 

  28. L. Shen, S. Liang, W. Wu, R. Liang, L. Wu, Multifunctional NH2-mediated zirconium metal–organic framework as an efficient visible-light-driven photocatalyst for selective oxidation of alcohols and reduction of aqueous Cr(vi). Dalt. Trans. 42, 13649–13657 (2013)

    CAS  Google Scholar 

  29. T. Van Vu, H. Kosslick, A. Schulz, J. Harloff, E. Paetzold, M. Schneider, J. Radnik, N. Steinfeldt, G. Fulda, U. Kragl, Selective hydroformylation of olefins over the rhodium supported large porous metal-organic framework MIL-101. Appl. Catal. A 468, 410–417 (2013)

    CAS  Google Scholar 

  30. S.M. Hosseinpour-Mashkani, F. Mohandes, M. Salavati-Niasari, K. Venkateswara-Rao, Microwave-assisted synthesis and photovoltaic measurements of CuInS2 nanoparticles prepared by using metal-organic precursors. Mater. Res. Bull. 47, 3148–3159 (2012)

    CAS  Google Scholar 

  31. M. Salavati-Niasari, F. Soofivand, A. Sobhani-Nasab, M. Shakouri-Arani, A. Yeganeh Faal, S. Bagheri, Synthesis, characterization, and morphological control of ZnTiO3 nanoparticles through sol-gel processes and its photocatalyst application. Adv. Powder Technol. 27, 2066–2075 (2016)

    CAS  Google Scholar 

  32. H. Ait Ahsaine, A. El Jaouhari, A. Slassi, M. Ezahri, A. Benlhachemi, B. Bakiz, F. Guinneton, J.R. Gavarri, Electronic band structure and visible-light photocatalytic activity of Bi2WO6: elucidating the effect of lutetium doping. RSC Adv. 6, 101105–101114 (2016)

    CAS  Google Scholar 

  33. Y. Xu, M. Lv, H. Yang, Q. Chen, X. Liu, F. Wei, BiVO4/MIL-101 composite having the synergistically enhanced visible light photocatalytic activity. RSC Adv. 5, 43473–43479 (2015)

    CAS  Google Scholar 

  34. K. Fujihara, S. Izumi, T. Ohno, M. Matsumura, Time-resolved photoluminescence of particulate TiO2 photocatalysts suspended in aqueous solutions. J. Photochem. Photobiol., A 132, 99–104 (2000)

    CAS  Google Scholar 

  35. M. Ghanbari, S. Gholamrezaei, M. Salavati-Niasari, Ag2CdI4: synthesis, characterization and investigation the strain lattice and grain size. J. Alloys Compd. 667, 115–122 (2016)

    CAS  Google Scholar 

  36. A. Jarrah, S. Farhadi, K6P2W18O62 encapsulated into magnetic Fe3O4/MIL-101 (Cr) metal-organic framework: a novel magnetically recoverable nanoporous adsorbent for ultrafast treatment of aqueous organic pollutants. RSC Adv. 8, 37976–37992 (2018)

    CAS  Google Scholar 

  37. L. Nirumand, S. Farhadi, A. Zabardasti, A. Khataee, Copper ferrite nanoparticles supported on MIL-101/reduced graphene oxide as an efficient and recyclable sonocatalyst. J. Taiwan Inst. Chem. Eng. 93, 674–685 (2018)

    CAS  Google Scholar 

  38. F. Motahari, M.R. Mozdianfard, F. Soofivand, M. Salavati-Niasari, NiO nanostructures: synthesis, characterization and photocatalyst application in dye wastewater treatment. RSC Adv. 4, 27654–27660 (2014)

    CAS  Google Scholar 

  39. I. Langmuir, The adsorption of gases on plane surfaces of glass, mica and platinum. J. Am. Chem. Soc. 40, 1361–1403 (1918)

    CAS  Google Scholar 

  40. H. Fan, X. Zhao, J. Yang, X. Shan, L. Yang, Y. Zhang, X. Li, M. Gao, ZnO-graphene composite for photocatalytic degradation of methylene blue dye. Catal. Commun. 29, 29–34 (2012)

    CAS  Google Scholar 

  41. Y. Wang, R. Shi, J. Lin, Y. Zhu, Significant photocatalytic enhancement in methylene blue degradation of TiO2 photocatalysts via graphene-like carbon in situ hybridization. Appl. Catal. B 100, 179–183 (2010)

    CAS  Google Scholar 

  42. P. Du, A. Bueno-López, M. Verbaas, A.R. Almeida, M. Makkee, J.A. Moulijn, G. Mul, The effect of surface OH-population on the photocatalytic activity of rare earth-doped P25-TiO2 in methylene blue degradation. J. Catal. 260, 75–80 (2008)

    CAS  Google Scholar 

  43. A. Houas, H. Lachheb, M. Ksibi, E. Elaloui, C. Guillard, J.M. Herrmann, Photocatalytic degradation pathway of methylene blue in water. Appl. Catal. B 31, 145–157 (2001)

    CAS  Google Scholar 

  44. F. Jiang, T. Yan, H. Chen, A. Sun, C. Xu, X. Wang, A g-C3 N4 -CdS composite catalyst with high visible-light-driven catalytic activity and photostability for methylene blue degradation. Appl. Surf. Sci. 295, 164–172 (2014)

    CAS  Google Scholar 

  45. T.J. Whang, M.T. Hsieh, H.H. Chen, Visible-light photocatalytic degradation of methylene blue with laser-induced Ag/ZnO nanoparticles. Appl. Surf. Sci. 258, 2796–2801 (2012)

    CAS  Google Scholar 

  46. J.Z. Kong, A.D. Li, X.Y. Li, H.F. Zhai, W.Q. Zhang, Y.P. Gong, H. Li, D. Wu, Photo-degradation of methylene blue using Ta-doped ZnO nanoparticle. J. Solid State Chem. 183, 1359–1364 (2010)

    CAS  Google Scholar 

  47. Y. Wang, Y. Zhang, Z. Jiang, G. Jiang, Z. Zhao, Q. Wu, Y. Liu, Q. Xu, A. Duan, C. Xu, Controlled fabrication and enhanced visible-light photocatalytic hydrogen production of Au@CdS/MIL-101 heterostructure. Appl. Catal. B 185, 307–314 (2016)

    CAS  Google Scholar 

  48. D. Channei, Fe3O4/SiO2/CeO2 core-shell magnetic nanoparticles as photocatalyst. Environ. Sci. (2014) 1–9. http://environment.scientific-journal.com

  49. H. Seema, K.C. Kemp, V. Chandra, K.S. Kim, Graphene–SnO2 composites for highly efficient photocatalytic degradation of methylene blue under sunlight. Nanotechnology 355705, 1–8 (2012)

    Google Scholar 

  50. A. Elaziouti, Preparation and characterization of p–n heterojunction CuBi2O4/CeO2 and its photocatalytic activities under UVA light irradiation. J. King Saud. Univ. Sci. 27, 120–135 (2015)

    Google Scholar 

Download references

Acknowledgements

This research was sponsored by Hue University under Decision No. 1208/QĐ-DHH.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dinh Quang Khieu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Thanh, H.T.M., Tu, N.T.T., Hung, N.P. et al. Magnetic iron oxide modified MIL-101 composite as an efficient visible-light-driven photocatalyst for methylene blue degradation. J Porous Mater 26, 1699–1712 (2019). https://doi.org/10.1007/s10934-019-00767-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10934-019-00767-1

Keywords

Navigation