MIL-101(Cr)/graphene hybrid aerogel used as a highly effective adsorbent for wastewater purification

Abstract

MIL-101(Cr)/graphene aerogel (MIL-101(Cr)/GA) was synthesized using a two-step synthesis and used as a high efficient adsorbent for wastewater purification. The as-prepared MIL-101(Cr)/GA was characterized using XRD, FTIR and Raman spectroscopy, XPS and FESEM to investigate its structure, composition and morphology. MIL-101(Cr)/GA exhibited a 3D interconnected macroporous framework comprised of graphene sheets, on which MIL-101(Cr) particles were dispersed uniformly. Dyes, organic solvents and oils were used to evaluate the adsorption performance of MIL-101(Cr)/GA, which exhibited an excellent adsorption capacity for both anionic methyl orange (331.5 mg g−1) and cationic rhodamine B (345.7 mg g−1) as well as 51–101 times its own weight of various solvents/oils. In addition, the MIL-101(Cr)/GA showed superior recycling stability for dyes and a rapid adsorption rate for solvents/oils. The excellent adsorption performance was attributed to a synergistic effect between MIL-101 and the graphene aerogel. The kinetic behavior for adsorption observed for MIL-101(Cr)/GA was well-fitted by a pseudo-second-order kinetic model. It is envisaged that MIL-101(Cr)/GA will be a promising adsorbent for the removal of pollutants and wastewater purification.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

References

  1. 1.

    W. Lv, Q. Mei, J. Xiao, M. Du, Q. Zheng, 3D multiscale superhydrophilic sponges with delicately designed pore size for ultrafast oil/water separation. Adv. Funct. Mater. 27(1–9), 1704293 (2017)

    Google Scholar 

  2. 2.

    L. Guan, Y.F. Tong, J.W. Li, D.B. Li, S.F. Wu, Research on ultraviolet-visible absorption spectrum preprocessing for water quality contamination detection. Optik 164, 277–288 (2018)

    CAS  Google Scholar 

  3. 3.

    G.P. Zhao, Z.L. Mo, P. Zhang, B. Wang, X.B. Zhu, R.B. Guo, Synthesis of graphene/Fe3O4/NiO magnetic nanocomposites and its application in photocatalytic degradation the organic pollutants in wastewater. J. Porous Mater. 22, 1245–1253 (2015)

    CAS  Google Scholar 

  4. 4.

    A.K. Jain, V.K. Gupta, A. Bhatnagar, Utilization of industrial waste products as adsorbents for the removal of dyes. J. Hazard. Mater. 101, 31–42 (2003)

    CAS  PubMed  Google Scholar 

  5. 5.

    S. Vasudevan, M.A. Oturan, Electrochemistry: as cause and cure in water pollution-an overview. Environ. Chem. Lett. 12, 97–108 (2013)

    Google Scholar 

  6. 6.

    V.K. Gupta, I. Ali, T.A. Saleh, A. Nayak, S. Agarwal, Chemical treatment technologies for waste-water recycling-an overview. RSC Adv. 2, 6380–6388 (2012)

    CAS  Google Scholar 

  7. 7.

    A. Behvandi, A.A. Safekordi, F. Khorasheh, Removal of benzoic acid from industrial wastewater using metal organic frameworks: equilibrium, kinetic and thermodynamic study. J. Porous Mater. 24, 165–178 (2017)

    CAS  Google Scholar 

  8. 8.

    O.S. Panwar, M. Kumar, S. Kumar, X-ray photoelectron spectroscopic study of nitrogen incorporated amorphous carbon films embedded with nanoparticles. Appl. Surf. Sci. 256, 7371–7376 (2010)

    Google Scholar 

  9. 9.

    R. Sabarish, G. Unnikrishnan, PVA/PDADMAC/ZSM-5 zeolite hybrid matrix membranes for dye adsorption: fabrication, characterization, adsorption, kinetics and antimicrobial properties. J. Environ. Chem. Eng. 6, 3860–3873 (2018)

    CAS  Google Scholar 

  10. 10.

    M. Harja, G. Ciobanu, Studies on adsorption of oxytetracycline from aqueous solutions onto hydroxyapatite. Sci. Total Environ. 628–629, 36–43 (2018)

    PubMed  Google Scholar 

  11. 11.

    S.T. Akar, S. Aslan, T. Akar, Conversion of natural mineral to effective geosorbent by coating MnO2 and its application potential for dye contaminated wastewaters. J. Clean. Prod. 189, 887–897 (2018)

    CAS  Google Scholar 

  12. 12.

    J. Zhang, G.Q. Huang, C. Liu, R.N. Zhang, X.X. Chen, L. Zhang, Synergistic effect of microbubbles and activated carbon on the ozonation treatment of synthetic dyeing wastewater. Sep. Purif. Technol. 201, 10–18 (2018)

    CAS  Google Scholar 

  13. 13.

    L. Baltes, S. Patachia, M. Tierean, O. Ekincioglu, M.H. Ozkul, Photoactive polymer-cement composites for tannins removal from wastewaters. J. Environ. Chem. Eng. 6, 4357–4367 (2018)

    CAS  Google Scholar 

  14. 14.

    I.G. Georgiev, L.R. MacGillivray, Metal-mediated reactivity in the organic solid state: from self-assembled complexes to metal-organic frameworks. Chem. Soc. Rev. 36, 1239–1248 (2007)

    CAS  PubMed  Google Scholar 

  15. 15.

    A. Schneemann, V. Bon, I. Schwedler, I. Senkovska, S. Kaskel, R.A. Fischer, Flexible metal-organic frameworks. Chem. Soc. Rev. 43, 6062–6096 (2014)

    CAS  PubMed  Google Scholar 

  16. 16.

    C.X. Yang, X.P. Yan, Metal-organic framework MIL-101(Cr) for high-performance liquid chromatographic separation of substituted aromatics. Anal. Chem. 83, 7144–7150 (2011)

    CAS  PubMed  Google Scholar 

  17. 17.

    Y.K. Seo, J.W. Yoon, J.S. Lee, Y.K. Hwang, C.H. Jun, J.S. Chang, S. Wuttke, P. Bazin, A. Vimont, M. Daturi, S. Bourrelly, P.L. Llewellyn, P. Horcajada, C. Serre, Gérard Férey, Energy-efficient dehumidification over hierachically porous metal-organic frameworks as advanced water adsorbents. Adv. Mater. 24, 806–810 (2012)

    CAS  PubMed  Google Scholar 

  18. 18.

    T. Wang, P. Zhao, N. Lu, H.C. Chen, C.L. Zhang, X.H. Hou, Facile fabrication of Fe3O4/MIL-101(Cr) for effective removal of acid red 1 and orange G from aqueous solution. Chem. Eng. J. 295, 403–413 (2016)

    CAS  Google Scholar 

  19. 19.

    S. Karmakar, D. Roy, C. Janiak, S. De, Insights into multi-component adsorption of reactive dyes on MIL-101-Cr metal organic framework: experimental and modeling approach. Sep. Purif. Technol. 215, 259–275 (2019)

    CAS  Google Scholar 

  20. 20.

    J.P. Yang, W.B. Zhu, W.Q. Qu, Z.Q. Yang, J. Wang, M.G. Zhang, H.L. Li, Selenium functionalized metal-organic framework MIL-101 for efficient and permanent sequestration of mercury. Environ. Sci. Technol. 53, 2260–2268 (2019)

    CAS  PubMed  Google Scholar 

  21. 21.

    Z.X. Zhao, X.M. Li, Z. Li, Adsorption equilibrium and kinetics of p-xylene on chromium-based metal organic framework MIL-101. Chem. Eng. J. 173, 150–157 (2011)

    CAS  Google Scholar 

  22. 22.

    J. Shi, Z.X. Zhao, Q.B. Xia, Y.W. Li, Z. Li, Adsorption and diffusion of ethyl acetate on the chromium-based metal-organic framework MIL-101. J. Chem. Eng. Data 56, 3419–3425 (2011)

    CAS  Google Scholar 

  23. 23.

    S.H. Jhung, J.H. Lee, J.W. Yoon, C. Serre, G. Férey, J.S. Chang, Microwave synthesis of chromium terephthalate MIL-101 and its benzene sorption ability. Adv. Mater. 19, 121–124 (2007)

    CAS  Google Scholar 

  24. 24.

    H. Hu, Z.B. Zhao, W.B. Wan, Y. Gogotsi, J.S. Qiu, Ultralight and highly compressible graphene aerogels. Adv. Mater. 25, 2219–2223 (2013)

    CAS  PubMed  Google Scholar 

  25. 25.

    Q.X. Yang, R. Lu, S.S. Ren, C.T. Chen, Z.J. Chen, X.Y. Yang, Three dimensional reduced graphene oxide/ZIF-67 aerogel: effective removal cationic and anionic dyes from water. Chem. Eng. J. 348, 202–211 (2018)

    CAS  Google Scholar 

  26. 26.

    J.J. Mao, M.Z. Ge, J.Y. Huang, Y.K. Lai, C.J. Lin, K.Q. Zhang, K. Meng, Y.X. Tang, Constructing multifunctional MOF@rGO hydro-/aerogels by the self-assembly process for customized water remediation. J. Mater. Chem. A 5, 11873–11881 (2017)

    CAS  Google Scholar 

  27. 27.

    Y.J. Wan, J.Z. Wang, F. Huang, Y.N. Xue, N. Cai, J. Liu, W.M. Chen, F.Q. Yu, Synergistic effect of adsorption coupled with catalysis based on graphene-supported MOF hybrid aerogel for promoted removal of dyes. RSC Adv. 8, 34552–34559 (2018)

    CAS  Google Scholar 

  28. 28.

    X. Zhang, Q. Liang, Q. Han, W. Wan, M. Ding, Metal-organic frameworks@graphene hybrid aerogels for solid-phase extraction of non-steroidal anti-inflammatory drugs and selective enrichment of proteins. Analyst 141, 4219–4226 (2016)

    CAS  PubMed  Google Scholar 

  29. 29.

    T. Zhao, L. Yang, P. Feng, I. Gruber, C. Janiak, Y.J. Liu, Facile synthesis of nano-sized MIL-101(Cr) with the addition of acetic acid. Inorg. Chim. Acta 471, 440–445 (2018)

    CAS  Google Scholar 

  30. 30.

    W.S. Hummers, R.E. Offeman, Preparation of graphitic oxide. J. Am. Chem. Soc. 80, 1339 (1958)

    CAS  Google Scholar 

  31. 31.

    F. Wang, Y. Wang, W. Zhan, S. Yu, W. Zhong, G. Sui, X. Yang, Facile synthesis of ultra-light graphene aerogels with super absorption capability for organic solvents and strain-sensitive electrical conductivity. Chem. Eng. J. 320, 539–548 (2017)

    CAS  Google Scholar 

  32. 32.

    G. Férey, C. Mellot-Draznieks, C. Serre, F. Millange, J. Dutour, S. Surble, L. Margiolaki, A chromium terephthalate-based solid with unusually large pore volumes and surface area. Science 309, 2040–2042 (2005)

    PubMed  Google Scholar 

  33. 33.

    K. Yang, Q. Sun, F. Xue, D.H. Lin, Adsorption of volatile organic compounds by metal-organic frameworks MIL-101: influence of molecular size and shape. J. Hazard. Mater. 195, 124–131 (2011)

    CAS  PubMed  Google Scholar 

  34. 34.

    Z.Y. Gu, X.P. Yan, Metal-organic framework MIL-101 for high-resolution gas-chromatographic separation of xylene isomers and ethylbenzene. Angew. Chem. Int. Edit. 49, 1477–1480 (2010)

    CAS  Google Scholar 

  35. 35.

    L. Chen, X.S. Hou, N. Song, L.Y. Shi, P. Ding, Cellulose/graphene bioplastic for thermal management: enhanced isotropic thermally conductive property by three-dimensional interconnected graphene aerogel. Compos. Part A 107, 189–196 (2018)

    CAS  Google Scholar 

  36. 36.

    D.B. Xiong, X.F. Li, Z.M. Bai, H. Shan, L.L. Fan, C.X. Wu, D.J. Li, S.G. Lu, Superior cathode performance of nitrogen-doped graphene frameworks for lithium ion batteries. ACS Appl. Mater. Interfaces 9, 10643–10651 (2017)

    CAS  PubMed  Google Scholar 

  37. 37.

    L. Xu, G. Xiao, C. Chen, R. Li, Y. Mai, G. Sun, D. Yan, Superhydrophobic and superoleophilic graphene aerogel prepared by facile chemical reduction. J. Mater. Chem. A 3, 7498–7504 (2015)

    CAS  Google Scholar 

  38. 38.

    K.C. Bedin, A.C. Martins, A.L. Cazetta, O. Pezoti, V.C. Almeida, KOH-activated carbon prepared from sucrose spherical carbon: adsorption equilibrium, kinetic and thermodynamic studies for methylene blue removal. Chem. Eng. J. 286, 476–484 (2016)

    CAS  Google Scholar 

  39. 39.

    X.J. Sun, Q.B. Xia, Z.X. Zhao, Y.W. Li, Z. Li, Synthesis and adsorption performance of MIL-101(Cr)/graphite oxide composites with high capacities of n-hexane. Chem. Eng. J. 239, 226–232 (2014)

    CAS  Google Scholar 

  40. 40.

    J.H. Li, J.Y. Li, H. Meng, S.Y. Xie, B.W. Zhang, L.F. Li, H.J. Ma, J.Y. Zhang, M. Yu, Ultra-light, compressible and fire-resistant graphene aerogel as a highly efficient and recyclable absorbent for organic liquids. J. Mater. Chem. A 2, 2934–2941 (2014)

    CAS  Google Scholar 

  41. 41.

    M.A. Lillo-Ródenas, D. Cazorla-Amoós, A. Linares-Solano, Behaviour of activated carbons with different pore size distributions and surface oxygen groups for benzene and toluene adsorption at low concentrations. Carbon 43, 1758–1767 (2005)

    Google Scholar 

  42. 42.

    M.A. Riaz, P. Hadi, I.H. Abidi, A. Tyagi, X.W. Ou, Z.T. Luo, Recyclable 3D graphene aerogel with bimodal pore structure for ultrafast and selective oil sorption from water. RSC Adv. 7, 29722–29731 (2017)

    CAS  Google Scholar 

  43. 43.

    R.P. Ren, W. Li, Y.K. Lv, A robust, superhydrophobic graphene aerogel as a recyclable sorbent for oils and organic solvents at various temperatures. J. Colloid Interface Sci. 500, 63–68 (2017)

    CAS  PubMed  Google Scholar 

  44. 44.

    M. Shafiei, M.S. Alivand, A. Rashidi, A. Samimi, D. Mohebbi-Kalhori, Synthesis and adsorption performance of a modified micro-mesoporous MIL-101(Cr) for VOCs removal at ambient conditions. Chem. Eng. J. 341, 164–174 (2018)

    CAS  Google Scholar 

  45. 45.

    S.J. Han, Q.F. Sun, H.H. Zheng, J.P. Li, C.D. Jin, Green and facile fabrication of carbon aerogels from cellulose-based waste newspaper for solving organic pollution. Carbohydr. Polym. 136, 95–100 (2016)

    CAS  PubMed  Google Scholar 

  46. 46.

    V.K. Gupta, P.J.M. Carrott, M.M.L. Ribeiro Carrott, Suhas, Low-cost adsorbents: growing approach to wastewater treatment-a review. Crit. Rev. Environ. Sci. Technol. 39, 783–842 (2009)

    Google Scholar 

  47. 47.

    S. Babel, T.A. Kurniawan, Low-cost adsorbents for heavy metals uptake from contaminated water: a review. J. Hazard. Mater. 97, 219–243 (2003)

    CAS  PubMed  Google Scholar 

  48. 48.

    S. Chakravarty, V. Dureja, G. Bhattacharyya, S. Maity, S. Bhattacharjee, Removal of arsenic from groundwater using low cost ferruginous manganese ore. Water Res. 36, 625–632 (2002)

    CAS  PubMed  Google Scholar 

  49. 49.

    M.B. Ahmed, J.L. Zhou, H.H. Ngo, W.S. Guo, Insight into biochar properties and its cost analysis. Biomass Bioenerg. 84, 76–86 (2016)

    CAS  Google Scholar 

  50. 50.

    G. Atun, G. Hisarli, W.S. Sheldrick, M. Muhler, Adsorptive removal of methylene blue from colored effluents on fuller’s earth. J. Colloid Interface Sci. 261, 32–39 (2003)

    CAS  PubMed  Google Scholar 

  51. 51.

    M.B. Ahmed, J.L. Zhou, H.H. Ngo, W.S. Guo, Adsorptive removal of antibiotics from water and wastewater: progress and challenges. Sci. Total Environ. 532, 112–126 (2015)

    CAS  PubMed  Google Scholar 

  52. 52.

    P. K. Thallapally, D. M. Strachan, Initial proof-of-principle for near room temperature Xe and Kr separation from air with MOFs, PNNL-21452, PNNL, (2012)

Download references

Acknowledgements

This work was supported by the Nation Natural Science Foundation of China (NSFC, Grant No. 21501012), the Scientific Research Project of Beijing Educational Committee (No. KM201710017007), and the Institute of nano-photoelectronics and high energy physics.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Guangjian Xing.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Hou, P., Xing, G., Han, D. et al. MIL-101(Cr)/graphene hybrid aerogel used as a highly effective adsorbent for wastewater purification. J Porous Mater 26, 1607–1618 (2019). https://doi.org/10.1007/s10934-019-00761-7

Download citation

Keywords

  • Graphene
  • Hybrid
  • Aerogel
  • Adsorption