Skip to main content
Log in

Facile preparation of 3D graphene-based/polyvinylidene fluoride composite for organic solvents capture in spent fuel reprocessing

  • Published:
Journal of Porous Materials Aims and scope Submit manuscript

Abstract

“Red oil” explosion is an important safety issue in spent fuel reprocessing and the most fundamental measure to prevent “red oil” explosion is the capture of organic solvents in water phase requiring further treatment. In this paper, superhydrophobic graphene/polyvinylidene fluoride composite aerogel (GA–PVDF) was synthesized by using HI as reductant under mild condition. The characterizations of SEM, FTIR, XRD, contact angle, mechanical property and oil/water absorption ability were performed to optimize the preparation conditions of GA–PVDF. It is found under optimal condition, the composite shows excellent water resistance, oil–water separation and mechanical properties. Furthermore, the recyclability and possible operation model of obtained GA–PVDF were also investigated. The result demonstrates that the composite material can be simply and efficiently used to capture the organic solvents without water uptake, which is attractive in the application of spent fuel reprocessing. Moreover, the recyclability of material also ensures the reduction of secondary waste. All of these indicate that GA–PVDF has great application potential for oil–water separation and “red oil” explosion prevention in spent fuel reprocessing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Y.A. El-Nadi, Solvent extraction and its applications on ore processing and recovery of metals: classical approach. Sep. Purif. Rev. 46(3), 195–215 (2016). https://doi.org/10.1080/15422119.2016.1240085

    Article  CAS  Google Scholar 

  2. K. Chandran, B. Sreenivasulu, N. Ramanathan, P.C. Clinsha, A. Suresh, N. Sivaraman, Thermal decomposition behaviour of irradiated tri n-butyl phosphate and mixture of di and mono n-butyl phosphate-nitric acid systems. Thermochim. Acta 657, 1–11 (2017). https://doi.org/10.1016/j.tca.2017.09.018

    Article  CAS  Google Scholar 

  3. R. Li, C. Liu, H. Zhao, S. He, Z. Li, Q. Li, L. Zhang, Di-1-methyl heptyl methylphosphonate (DMHMP): a promising extractant in Th-based fuel reprocessing. Sep. Purif. Technol. 173, 105–112 (2017)

    Article  CAS  Google Scholar 

  4. T.G. Srinivasan, P.R. Vasudeva Rao, Red oil excursions: a review. Sep. Sci. Technol. 49(15), 2315–2329 (2014). https://doi.org/10.1080/01496395.2014.928321

    Article  CAS  Google Scholar 

  5. S. Manohar, K. Narayan Kutty, B.V. Shah, P.K. Wattal, S.L. Bajoria, N.S. Kolhe, V.K. Rathod, Removal of dissolved Trin-butyl phosphate from aqueous streams of reprocessing origin: engineering scale studies. Desalin Water Treat 38(1–3), 146–150 (2012). https://doi.org/10.1080/19443994.2012.664316

    Article  CAS  Google Scholar 

  6. V.G. Lade, P.C. Wankhede, V.K. Rathod, Removal of tributyl phosphate from aqueous stream in a pilot scale combined air-lift mixer-settler unit: process intensification studies. Chem. Eng. Process. 95, 72–79 (2015). https://doi.org/10.1016/j.cep.2015.05.004

    Article  CAS  Google Scholar 

  7. R. Natarajan, Reprocessing of spent nuclear fuel in India: present challenges and future programme. Prog. Nucl. Energy 101, 118–132 (2017). https://doi.org/10.1016/j.pnucene.2017.03.001

    Article  CAS  Google Scholar 

  8. T. Liu, G. Zhao, W. Zhang, H. Chi, C. Hou, Y. Sun, The preparation of superhydrophobic graphene/melamine composite sponge applied in treatment of oil pollution. J. Porous Mater. 22(6), 1573–1580 (2015). https://doi.org/10.1007/s10934-015-0040-8

    Article  CAS  Google Scholar 

  9. M.H. Sorour, H.A. Hani, G.A. Al-Bazedi, A.M. El-Rafei, Hydrophobic silica aerogels for oil spills clean-up, synthesis, characterization and preliminary performance evaluation. J. Porous Mater. 23(5), 1401–1409 (2016). https://doi.org/10.1007/s10934-016-0200-5

    Article  CAS  Google Scholar 

  10. B. Doshi, M. Sillanpaa, S. Kalliola, A review of bio-based materials for oil spill treatment. Water Res. 135, 262–277 (2018). https://doi.org/10.1016/j.watres.2018.02.034

    Article  CAS  PubMed  Google Scholar 

  11. X. Yue, J. Li, T. Zhang, F. Qiu, D. Yang, M. Xue, In situ one-step fabrication of durable superhydrophobic-superoleophilic cellulose/LDH membrane with hierarchical structure for efficiency oil/water separation. Chem. Eng. J. 328, 117–123 (2017). https://doi.org/10.1016/j.cej.2017.07.026

    Article  CAS  Google Scholar 

  12. F. Guo, Q. Wen, Z. Guo, Low cost and non-fluoride flowerlike superhydrophobic particles fabricated for both emulsions separation and dyes adsorption. J. Colloid Interface Sci. 507, 421–428 (2017). https://doi.org/10.1016/j.jcis.2017.08.021

    Article  CAS  PubMed  Google Scholar 

  13. N. Cao, Q. Lyu, J. Li, Y. Wang, B. Yang, S. Szunerits, R. Boukherroub, Facile synthesis of fluorinated polydopamine/chitosan/reduced graphene oxide composite aerogel for efficient oil/water separation. Chem. Eng. J. 326, 17–28 (2017). https://doi.org/10.1016/j.cej.2017.05.117

    Article  CAS  Google Scholar 

  14. P. Saha, L. Dashairya, Reduced graphene oxide modified melamine formaldehyde (rGO@MF) superhydrophobic sponge for efficient oil–water separation. J. Porous Mater. 25(5), 1475–1488 (2018). https://doi.org/10.1007/s10934-018-0560-0

    Article  CAS  Google Scholar 

  15. S. Song, H. Yang, C. Su, Z. Jiang, Z. Lu, Ultrasonic-microwave assisted synthesis of stable reduced graphene oxide modified melamine foam with superhydrophobicity and high oil adsorption capacities. Chem. Eng. J. 306, 504–511 (2016). https://doi.org/10.1016/j.cej.2016.07.086

    Article  CAS  Google Scholar 

  16. S. Yang, L. Chen, C. Wang, M. Rana, P.C. Ma, Surface roughness induced superhydrophobicity of graphene foam for oil-water separation. J. Colloid Interface Sci. 508, 254–262 (2017). https://doi.org/10.1016/j.jcis.2017.08.061

    Article  CAS  PubMed  Google Scholar 

  17. C. Li, D. Jiang, H. Liang, B. Huo, C. Liu, W. Yang, J. Liu, Superelastic and arbitrary-shaped graphene aerogels with sacrificial skeleton of melamine foam for varied applications. Adv. Funct. Mater. 28(8), 1704674 (2018). https://doi.org/10.1002/adfm.201704674

    Article  CAS  Google Scholar 

  18. S. Moradi, P. Englezos, S.G. Hatzikiriakos, Contact angle hysteresis: surface morphology effects. Colloid Polym. Sci. 291(2), 317–328 (2012). https://doi.org/10.1007/s00396-012-2746-3

    Article  CAS  Google Scholar 

  19. M.A. Riaz, P. Hadi, I.H. Abidi, A. Tyagi, X. Ou, Z. Luo, Recyclable 3D graphene aerogel with bimodal pore structure for ultrafast and selective oil sorption from water. RSC Adv. 7(47), 29722–29731 (2017). https://doi.org/10.1039/c7ra02886e

    Article  CAS  Google Scholar 

  20. J. Li, J. Li, H. Meng, S. Xie, B. Zhang, L. Li, H. Ma, J. Zhang, M. Yu, Ultra-light, compressible and fire-resistant graphene aerogel as a highly efficient and recyclable absorbent for organic liquids. J. Mater. Chem. A 2(9), 2934 (2014). https://doi.org/10.1039/c3ta14725h

    Article  CAS  Google Scholar 

  21. Y. Lin, G.J. Ehlert, C. Bukowsky, H.A. Sodano, Superhydrophobic functionalized graphene aerogels. ACS Appl. Mater. Interfaces. 3(7), 2200–2203 (2011). https://doi.org/10.1021/am200527j

    Article  CAS  PubMed  Google Scholar 

  22. H. Chang, J. Qin, P. Xiao, Y. Yang, T. Zhang, Y. Ma, Y. Huang, Y. Chen, Highly reversible and recyclable absorption under both hydrophobic and hydrophilic conditions using a reduced bulk graphene oxide material. Adv. Mater. 28(18), 3504–3509 (2016). https://doi.org/10.1002/adma.201505420

    Article  CAS  PubMed  Google Scholar 

  23. S. Pei, J. Zhao, J. Du, W. Ren, H.-M. Cheng, Direct reduction of graphene oxide films into highly conductive and flexible graphene films by hydrohalic acids. Carbon 48(15), 4466–4474 (2010). https://doi.org/10.1016/j.carbon.2010.08.006

    Article  CAS  Google Scholar 

  24. W. Chen, L. Yan, In situ self-assembly of mild chemical reduction graphene for three-dimensional architectures. Nanoscale 3(8), 3132–3137 (2011). https://doi.org/10.1039/c1nr10355e

    Article  CAS  PubMed  Google Scholar 

  25. W. Li, A. Amirfazli, A thermodynamic approach for determining the contact angle hysteresis for superhydrophobic surfaces. J. Colloid Interface Sci. 292(1), 195–201 (2005). https://doi.org/10.1016/j.jcis.2005.05.062

    Article  CAS  PubMed  Google Scholar 

  26. R. Rioboo, B. Delattre, D. Duvivier, A. Vaillant, J. De Coninck, Superhydrophobicity and liquid repellency of solutions on polypropylene. Adv. Colloid Interface Sci. 175, 1–10 (2012). https://doi.org/10.1016/j.cis.2012.03.003

    Article  CAS  PubMed  Google Scholar 

  27. A. Marmur, Solid-surface characterization by wetting. Annu. Rev. Mater. Res. 39(1), 473–489 (2009). https://doi.org/10.1146/annurev.matsci.38.060407.132425

    Article  CAS  Google Scholar 

  28. L. Peng, W. Lei, P. Yu, Y. Luo, Polyvinylidene fluoride (PVDF)/hydrophobic nano-silica (H-SiO2) coated superhydrophobic porous materials for water/oil separation. RSC Adv. 6(13), 10365–10371 (2016). https://doi.org/10.1039/c5ra17728f

    Article  CAS  Google Scholar 

  29. W. Wu, R. Huang, W. Qi, R. Su, Z. He, Bioinspired peptide-coated superhydrophilic poly(vinylidene fluoride) membrane for oil/water emulsion separation. Langmuir 34(22), 6621–6627 (2018). https://doi.org/10.1021/acs.langmuir.8b01017

    Article  CAS  PubMed  Google Scholar 

  30. C. Wei, F. Dai, L. Lin, Z. An, Y. He, X. Chen, L. Chen, Y. Zhao, Simplified and robust adhesive-free superhydrophobic SiO2-decorated PVDF membranes for efficient oil/water separation. J. Membr. Sci. 555, 220–228 (2018). https://doi.org/10.1016/j.memsci.2018.03.058

    Article  CAS  Google Scholar 

  31. G.J. Ross, J.F. Watts, M.P. Hill, P. Morrissey, Surface modification of poly(vinylidene fluoride) by alkaline treatment 1. The degradation mechanism. Polymer 41(5), 1685–1696 (2000). https://doi.org/10.1016/S0032-3861(99)00343-2

    Article  CAS  Google Scholar 

  32. B. Zhao, C. Zhao, C. Wang, C.B. Park, Poly(vinylidene fluoride) foams: a promising low-k dielectric and heat-insulating material. J. Mater. Chem. C 6(12), 3065–3073 (2018). https://doi.org/10.1039/c8tc00547h

    Article  CAS  Google Scholar 

  33. A. Lund, C. Gustafsson, H. Bertilsson, R.W. Rychwalski, Enhancement of β phase crystals formation with the use of nanofillers in PVDF films and fibres. Compos. Sci. Technol. 71(2), 222–229 (2011). https://doi.org/10.1016/j.compscitech.2010.11.014

    Article  CAS  Google Scholar 

  34. Z. Peng, C. Xiong, W. Wang, F. Tan, X. Wang, X. Qiao, P.K. Wong, Hydrophobic modification of nanoscale zero-valent iron with excellent stability and floatability for efficient removal of floating oil on water. Chemosphere 201, 110–118 (2018). https://doi.org/10.1016/j.chemosphere.2018.02.149

    Article  CAS  PubMed  Google Scholar 

  35. H. Sun, Z. Xu, C. Gao, Multifunctional, ultra-flyweight, synergistically assembled carbon aerogels. Adv. Mater. 25(18), 2554–2560 (2013). https://doi.org/10.1002/adma.201204576

    Article  CAS  PubMed  Google Scholar 

  36. Y. Wu, N. Yi, L. Huang, T. Zhang, S. Fang, H. Chang, N. Li, J. Oh, J.A. Lee, M. Kozlov, A.C. Chipara, H. Terrones, P. Xiao, G. Long, Y. Huang, F. Zhang, L. Zhang, X. Lepro, C. Haines, M.D. Lima, N.P. Lopez, L.P. Rajukumar, A.L. Elias, S. Feng, S.J. Kim, N.T. Narayanan, P.M. Ajayan, M. Terrones, A. Aliev, P. Chu, Z. Zhang, R.H. Baughman, Y. Chen, Three-dimensionally bonded spongy graphene material with super compressive elasticity and near-zero Poisson’s ratio. Nat. Commun. 6, 6141 (2015). https://doi.org/10.1038/ncomms7141

    Article  CAS  PubMed  Google Scholar 

  37. A.B.D. Cassie, S. Baxter, Wettability of porous surfaces. Trans. Faraday Soc. 40(4), 546–551 (1944). https://doi.org/10.1039/tf9444000546

    Article  CAS  Google Scholar 

  38. M. Chen, Z. Li, Y. Geng, H. Zhao, S. He, A. Chen, Q. Li, L. Zhang, A modular process for the treatment of high level liquid waste (HLLW) using solvent-impregnated graphene aerogel. Hydrometallurgy 179, 167–174 (2018). https://doi.org/10.1016/j.hydromet.2018.06.005

    Article  CAS  Google Scholar 

  39. W. Wan, Y. Lin, A. Prakash, Y. Zhou, Three-dimensional carbon-based architectures for oil remediation: from synthesis and modification to functionalization. J. Mater. Chem. A 4(48), 18687–18705 (2016). https://doi.org/10.1039/c6ta07211a

    Article  CAS  Google Scholar 

  40. F. Chen, Y. Lu, X. Liu, J. Song, G. He, M.K. Tiwari, C.J. Carmalt, I.P. Parkin, Table salt as a template to prepare reusable porous PVDF-MWCNT foam for separation of immiscible oils/organic solvents and corrosive aqueous solutions. Adv. Funct. Mater. 27(41), 1702926 (2017). https://doi.org/10.1002/adfm.201702926

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by National Natural Science Foundation of China (Nos. 11305244; 11505270) and “Strategic Priority Research Program” of the Chinese Academy of Sciences (Grant No. XDA02030000).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zheng Li or Lan Zhang.

Ethics declarations

Conflict of interest

There are no conflicts of interest to declare.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

10934_2019_760_MOESM1_ESM.mpg

Supplementary material 1 (MPG 11524 kb) Movie S1 Squeezing recovery process of GA-PVDF impregnated with 30% TBP-n-dodecane.

10934_2019_760_MOESM2_ESM.mpg

Supplementary material 2 (MPG 10924 kb) Movie S2 The static oil-water separation experiment for removing 30% TBP-n-dodecane from a system.

10934_2019_760_MOESM3_ESM.mpg

Supplementary material 3 (MPG 21744 kb) Movie S3 The continuous oil-water separation experiment for removing 30% TBP-n-dodecane from a system.

Supplementary material 4 (DOC 1171 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Geng, Y., Li, J., Li, Z. et al. Facile preparation of 3D graphene-based/polyvinylidene fluoride composite for organic solvents capture in spent fuel reprocessing. J Porous Mater 26, 1619–1629 (2019). https://doi.org/10.1007/s10934-019-00760-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10934-019-00760-8

Keywords

Navigation