Facile template-free synthesis of hierarchically porous NiO hollow architectures with high-efficiency adsorptive removal of Congo red


Hierarchically porous NiO hollow architectures (HPHAs) were synthesized via a one-pot facile chemical bath deposition method and followed by a calcination process. The crystal structure, component and morphology of the products were characterized by various techniques. The results revealed that hierarchical architectures with hollow interior are composed of mesoporous NiO nanoflakes with thickness of about 8 nm. Interestingly, the as-synthesized NiO HPHAs have the unusual three-ordered porous features including a microscale hollow interior and two mesoscale pores which are attributed to the holes on the surface of nanoflakes with an average diameter of about 3.9 nm and the cavities on the wall of microsphere in the range of 20–40 nm in diameter formed by interconnecting nanoflakes. These comprehensive hierarchically porous structures are beneficial for the adsorption performance towards Congo red in water. The absorptive capacity over NiO HPHAs achieved about 1.8 and 4.0 times as high as that of the precursor β-Ni(OH)2 hollow microspheres (HSs) and the commercial activity carbon (AC) under the same conditions. The studies of adsorption kinetics illustrated that the adsorption behavior perfectly obeyed the pseudo-second-order model and the adsorption isotherm fits the Langmuir adsorption assumption well. The maximum adsorption capacities were calculated to be 490.2 mg g−1 according to the Langmuir equation, which is excellent result compared to NiO absorbents. The high-efficiency adsorption capacities for NiO HPHAs are attributed to the large specific surface area, the synergistic effect of micro-mesoporous structure and the electrostatic interaction of NiO with CR molecules. Additionally, NiO HPHAs can be easily renewed and has good chemical stability, indicating a great promising absorbent in the application for the removal of diazo organics in wastewater.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7: a
Fig. 8: a
Fig. 9: a
Fig. 10: a


  1. 1.

    X.W. Lou, C.M. Li, L.A. Archer, Designed synthesis of coaxial SnO2@carbon hollow nanospheres for highly reversible lithium storage. Adv. Mater. 21, 2536–2539 (2009)

    CAS  Google Scholar 

  2. 2.

    X. Lai, J.E. Halpert, D. Wang, Recent advances in micro-/nano-structured hollow spheres for energy applications: from simple to complex systems. Energy Environ. Sci. 5, 5604–5618 (2012)

    CAS  Google Scholar 

  3. 3.

    L. Shen, L. Yu, X.Y. Yu, X. Zhang, X.W.D. Lou, Self-templated formation of uniform NiCo2O4 hollow spheres with complex interior structures for lithium-ion batteries and supercapacitors. Angew. Chem. Int. Ed. 54, 1868–1872 (2015)

    CAS  Google Scholar 

  4. 4.

    X. Xu, J. Liang, H. Zhou, S. Ding, D. Yu, The preparation of hierarchical tubular structures comprised of NiO nanosheets with enhanced supercapacitive performance. RSC Adv. 4, 3181–3187 (2014)

    CAS  Google Scholar 

  5. 5.

    X. Wang, L. Qiao, X. Sun, X. Li, D. Hu, Q. Zhang, D. He, Mesoporous NiO nanosheet networks as high performance anodes for Li ion batteries. J. Mater. Chem. A 1, 4173 (2013)

    CAS  Google Scholar 

  6. 6.

    J. Zhang, D. Zeng, Q. Zhu, J. Wu, Q. Huang, C. Xie, Effect of nickel vacancies on the room-temperature NO2 sensing properties of mesoporous NiO nanosheets. J. Phys. Chem. C 120, 3936–3945 (2016)

    CAS  Google Scholar 

  7. 7.

    Z. Li, L. Wei, Y. Liu, Y. Su, X. Dong, Y. Zhang, Facile synthesis of single-crystalline mesoporous NiO nanosheets as high-performance anode materials for Li-ion batteries. J. Mater. Sci.: Mater. Electron. 28, 13853–13860 (2017)

    CAS  Google Scholar 

  8. 8.

    X. Xu, L. Li, F. Yu, H. Peng, X. Fang, X. Wang, Mesoporous high surface area NiO synthesized with soft templates: remarkable for catalytic CH4 deep oxidation. Mol. Catal. 441, 81–91 (2017)

    CAS  Google Scholar 

  9. 9.

    Y. Wang, Q. Zhu, H. Zhang, Fabrication of β-Ni(OH)2 and NiO hollow spheres by a facile template-free process. Chem. Commun. 41, 5231–5233 (2005)

    Google Scholar 

  10. 10.

    J. Liu, S. Du, L. Wei, H. Liu, Y. Tian, Y. Chen, Template-free synthesis of NiO hollow microspheres covered with nanoflakes. Mater. Lett. 60, 3601–3604 (2006)

    CAS  Google Scholar 

  11. 11.

    C. Li, Y. Liu, L. Li, Z. Du, S. Xu, M. Zhang, X. Yin, T. Wang, A novel amperometric biosensor based on NiO hollow nanospheres for biosensing glucose. Talanta 77, 455–459 (2008)

    CAS  PubMed  Google Scholar 

  12. 12.

    Z. Cui, H. Yin, Q. Nie, D. Qin, W. Wu, X. He, Hierarchical flower-like NiO hollow microspheres for non-enzymatic glucose sensors. J. Electroanal. Chem. 757, 51–57 (2015)

    CAS  Google Scholar 

  13. 13.

    X.H. Huang, J.P. Tu, C.Q. Zhang, F. Zhou, Hollow microspheres of NiO as anode materials for lithium-ion batteries. Electrochim. Acta 55, 8981–8985 (2010)

    CAS  Google Scholar 

  14. 14.

    C.-Y. Cao, W. Guo, Z.-M. Cui, W.-G. Song, W. Cai, Microwave-assisted gas/liquid interfacial synthesis of flowerlike NiO hollow nanosphere precursors and their application as supercapacitor electrodes. J. Mater. Chem. 21, 3204–3209 (2011)

    CAS  Google Scholar 

  15. 15.

    N.G. Cho, I.-S. Hwang, H.-G. Kim, J.-H. Lee, I.-D. Kim, Gas sensing properties of p-type hollow NiO hemispheres prepared by polymeric colloidal templating method. Sens. Actuators B 155, 366–371 (2011)

    CAS  Google Scholar 

  16. 16.

    S. Ding, T. Zhu, J.S. Chen, Z. Wang, C. Yuan, X.W. Lou, Controlled synthesis of hierarchical NiO nanosheet hollow spheres with enhanced supercapacitive performance. J. Mater. Chem. 21, 6602–6606 (2011)

    CAS  Google Scholar 

  17. 17.

    W. Yu, X. Jiang, S. Ding, B.Q. Li, Preparation and electrochemical characteristics of porous hollow spheres of NiO nanosheets as electrodes of supercapacitors. J. Power Sources 256, 440–448 (2014)

    CAS  Google Scholar 

  18. 18.

    P. Zhang, X. Ma, Y. Guo, Q. Cheng, L. Yang, Size-controlled synthesis of hierarchical NiO hollow microspheres and the adsorption for Congo red in water. Chem. Eng. J. 189–190, 188–195 (2012)

    Google Scholar 

  19. 19.

    J. Zhao, L. Wu, K. Zou, Fabrication of hollow mesoporous NiO hexagonal microspheres via hydrothermal process in ionic liquid. Mater. Res. Bull. 46, 2427–2432 (2011)

    CAS  Google Scholar 

  20. 20.

    F. Al-Hazmi, T. Al-Harbi, W.E. Mahmoud, Synthesis and characterization of thin shell hollow sphere NiO nanopowder via ultrasonic technique. Mater. Lett. 86, 28–30 (2012)

    CAS  Google Scholar 

  21. 21.

    D. Xie, W. Yuan, Z. Dong, Q. Su, J. Zhang, G. Du, Facile synthesis of porous NiO hollow microspheres and its electrochemical lithium-storage performance. Electrochim. Acta 92, 87–92 (2013)

    CAS  Google Scholar 

  22. 22.

    L. Liu, Y. Guo, Y. Wang, X. Yang, S. Wang, H. Guo, Hollow NiO nanotubes synthesized by bio-templates as the high performance anode materials of lithium-ion batteries. Electrochim. Acta 114, 42–47 (2013)

    CAS  Google Scholar 

  23. 23.

    Z. Yang, F. Xu, W. Zhang, Z. Mei, B. Pei, X. Zhu, Controllable preparation of multishelled NiO hollow nanospheres via layer-by-layer self-assembly for supercapacitor application. J. Power Sources 246, 24–31 (2014)

    CAS  Google Scholar 

  24. 24.

    F. Feng, S. Zhao, R. Liu, Z. Yang, Q. Shen, NiO Flowerlike porous hollow nanostructures with an enhanced interfacial storage capability for battery-to-pseudocapacitor transition. Electrochim. Acta 222, 1160–1168 (2016)

    CAS  Google Scholar 

  25. 25.

    S. Hao, B. Zhang, S. Ball, B. Hu, J. Wu, Y. Huang, Porous and hollow NiO microspheres for high capacity and long-life anode materials of Li-ion batteries. Mater. Des. 92, 160–165 (2016)

    CAS  Google Scholar 

  26. 26.

    M.K. Wu, C. Chen, J.J. Zhou, F.Y. Yi, K. Tao, L. Han, MOF-derived hollow double-shelled NiO nanospheres for high-performance supercapacitors. J. Alloys Compd. 734, 1–8 (2018)

    CAS  Google Scholar 

  27. 27.

    S. Wang, W. Li, L. Xin, M. Wu, W. Sun, X. Lou, Pollen-inspired synthesis of porous and hollow NiO elliptical microstructures assembled from nanosheets for high-performance electrochemical energy storage. Chem. Eng. J. 321, 546–553 (2017)

    CAS  Google Scholar 

  28. 28.

    L.P. Zhu, G.H. Liao, Y. Yang, H.M. Xiao, J.F. Wang, S.Y. Fu, Self-assembled 3D flower-like hierarchical beta-Ni(OH)2 hollow architectures and their in situ thermal conversion to NiO. Nanoscale Res. Lett. 4, 550–557 (2009)

    CAS  PubMed  PubMed Central  Google Scholar 

  29. 29.

    C. Kuang, W. Zeng, H. Ye, Y. Li, A novel approach for fabricating NiO hollow spheres for gas sensors. Physica E 97, 314–316 (2018)

    CAS  Google Scholar 

  30. 30.

    D.B. Wang, C.X. Song, Z.S. Hu, X. Fu, Fabrication of hollow spheres and thin films of nickel hydroxide and nickel oxide with hierarchical structures. J. Phys. Chem. B 109, 1125–1129 (2005)

    PubMed  Google Scholar 

  31. 31.

    C.H. Deng, H.M. Hu, X.Q. Ge, C.L. Han, D.F. Zhao, G.Q. Shao, One-pot sonochemical fabrication of hierarchical hollow CuO submicrospheres. Ultrason. Sonochem. 18, 932–937 (2011)

    CAS  PubMed  Google Scholar 

  32. 32.

    C.H. Deng, X.Q. Ge, H.M. Hu, L. Yao, C.L. Han, D.F. Zhao, Template-free and green sonochemical synthesis of hierarchically structured CuS hollow microspheres displaying excellent Fenton-like catalytic activities. CrystEngComm 16, 2738–2745 (2014)

    CAS  Google Scholar 

  33. 33.

    X.Q. Ge, H.M. Hu, C.H. Deng, Q. Zheng, M. Wang, G.Y. Chen, Facile sonochemical synthesis of hierarchical Cu2O hollow submicrospheres with high adsorption capacity for methyl orange. Mater. Lett. 141, 214–216 (2015)

    CAS  Google Scholar 

  34. 34.

    C.H. Deng, H.M. Hu, G.Q. Shao, C.L. Han, Facile template-free sonochemical fabrication of hollow ZnO spherical structures. Mater. Lett. 64, 852–855 (2010)

    CAS  Google Scholar 

  35. 35.

    H.M. Hu, J. Wang, C.H. Deng, C. Niu, H.R. Le, Microwave-assisted controllable synthesis of hierarchical CuS nanospheres displaying fast and efficient photocatalytic activities. J. Mater. Sci. 53, 14250–14261 (2018)

    CAS  Google Scholar 

  36. 36.

    J. Wang, L. Xiao, S. Wen, N. Chen, Z. Dai, J. Deng, L. Nie, J. Min, Hierarchically porous SiO2/C hollow microspheres: a highly efficient adsorbent for Congo Red removal. RSC Adv. 8, 19852–19860 (2018)

    CAS  Google Scholar 

  37. 37.

    C. Lei, M. Pi, B. Cheng, C. Jiang, J. Qin, Fabrication of hierarchical porous ZnO/NiO hollow microspheres for adsorptive removal of Congo red. Appl. Surf. Sci. 435, 1002–1010 (2018)

    CAS  Google Scholar 

  38. 38.

    H.M. Hu, G.Y. Chen, C.H. Deng, Y. Qian, M. Wang, Q. Zheng, Green microwave-assisted synthesis of hierarchical NiO architectures displaying a fast and high adsorption behavior for Congo red. Mater. Lett. 170, 139–141 (2016)

    CAS  Google Scholar 

  39. 39.

    H.M. Hu, M. Wang, H. Xuan, K.H. Zhang, J.J. Xu, Single-crystalline porous NiO nanobiscuits with prompt adsorption activity for Congo red. Micro Nano Lett. 12, 987–990 (2017)

    CAS  Google Scholar 

  40. 40.

    X. Xia, J. Tu, Y. Zhang, X. Wang, C. Gu, X. Zhao, H. Fan, High-Quality Metal Oxide Core/Shell Nanowire Arrays on Conductive Substrates for Electrochemical Energy Storage. ACS Nano 6, 5531–5538 (2012)

    CAS  PubMed  Google Scholar 

  41. 41.

    G. Duan, W. Cai, Y. Luo, F. Sun, A Hierarchically Structured Ni(OH)2 Monolayer Hollow-Sphere Array and Its Tunable Optical Properties over a Large Region. Adv. Func. Mater. 17, 644–650 (2010)

    Google Scholar 

  42. 42.

    X. Yan, X. Tong, J. Wang, C. Gong, M. Zhang, L. Liang, Rational synthesis of hierarchically porous NiO hollow spheres and their supercapacitor application. Mater. Lett. 95, 1–4 (2013)

    CAS  Google Scholar 

  43. 43.

    K.S.W. Sing, D.H. Everett, R.A.W. Haul, L. Moscou, R.A. Pierotti, J. Rouquerol, T. Siemieniewska, Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity. Pure Appl. Chem. 57, 603–619 (1985)

    CAS  Google Scholar 

  44. 44.

    Z. Song, L. Chen, J. Hu, R. Richards, NiO(111) nanosheets as efficient and recyclable adsorbents for dye pollutant removal from wastewater. Nanotechnology 20, 275707 (2009)

    PubMed  Google Scholar 

  45. 45.

    B. Cheng, Y. Le, W. Cai, J. Yu, Synthesis of hierarchical Ni(OH)2 and NiO nanosheets and their adsorption kinetics and isotherms to Congo red in water. J. Hazard. Mater. 185, 889–897 (2010)

    PubMed  Google Scholar 

  46. 46.

    J. Zhao, Y. Tan, K. Su, J. Zhao, C. Yang, L. Sang, H. Lu, J. Chen, A facile homogeneous precipitation synthesis of NiO nanosheets and their applications in water treatment. Appl. Surf. Sci. 337, 111–117 (2015)

    CAS  Google Scholar 

  47. 47.

    L. Ai, Y. Zeng, Hierarchical porous NiO architectures as highly recyclable adsorbents for effective removal of organic dye from aqueous solution. Appl. Surf. Sci. 215, 269–278 (2013)

    Google Scholar 

  48. 48.

    Y. Zheng, B. Zhu, H. Chen, W. You, C. Jiang, J. Yu, Hierarchical flower-like nickel(II) oxide microspheres with high adsorption capacity of Congo red in water. J. Colloid Interface Sci. 504, 688–696 (2017)

    CAS  PubMed  Google Scholar 

  49. 49.

    X. Rong, F. Qiu, J. Qin, H. Zhao, J. Yan, D. Yang, A facile hydrothermal synthesis, adsorption kinetics and isotherms to Congo Red azo-dye from aqueous solution of NiO/graphene nanosheets adsorbent. J. Ind. Eng. Chem. 26, 354–363 (2015)

    CAS  Google Scholar 

  50. 50.

    S. Ghorai, A. Sarkar, M. Raoufi, A.B. Panda, H. Schönherr, S. Pal, Enhanced Removal of Methylene Blue and Methyl Violet Dyes from Aqueous Solution Using a Nanocomposite of Hydrolyzed Polyacrylamide Grafted Xanthan Gum and Incorporated Nanosilica. ACS Appl. Mater. Interfaces. 6, 4766–4777 (2014)

    CAS  PubMed  Google Scholar 

  51. 51.

    Y. Zheng, H. Wang, B. Cheng, W. You, J. Yu, Fabrication of hierarchical bristle-grass-like NH4Al(OH)2CO3@Ni(OH)2 core-shell structure and its enhanced Congo red adsorption performance. J. Alloys Compd. 750, 644–654 (2018)

    CAS  Google Scholar 

Download references


This work was supported by the Natural Science Foundation of Anhui Province Educational Committee (Grant No. KJ2018A0511), the Key Projects of Support Program for Outstanding Young Talents of Anhui Province (Grant No. gxyqZD2016151), the Natural Science Foundation of Anhui Province (Grant No. 1808085MB40), the Key Projects of Research and Development Program of Anhui Provence (Grant No. 201904b11020040), and the Program of Study Abroad for Excellent Young Scholar of Anhui Province (Grant No. gxfxZD2016221).

Author information



Corresponding author

Correspondence to Chonghai Deng.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Hu, H., Deng, C., Sun, M. et al. Facile template-free synthesis of hierarchically porous NiO hollow architectures with high-efficiency adsorptive removal of Congo red. J Porous Mater 26, 1743–1753 (2019). https://doi.org/10.1007/s10934-019-00758-2

Download citation


  • NiO
  • Hollow structure
  • Pore structure
  • Adsorption
  • Water purification